
Algorithms

Basic DSes
Array vs LL
Arrays: Static data sets, ones where fast
index-based access is needed, Slow expansion,
insertion, deletion. LLs: Dynamic data sets,
insertion & deletion more important than
random access.

Linked Lists
Operations

Search O(N)
Prepend / Append O(1)
Delete O(N)

Runtime Analysis

constant 1
logarithmic log N
linear N
linearithmic N log N

quadratic N2

cubic N3

exponential 2N

Sorting Algorithm Info

Algorithm O(N) Ω(N) Θ(N)

Selection O(N2) Ω(N2) Θ(N2)

Insertion O(N2) Ω(N) Θ(N2)
Shellsort ≤

O(N2)

Ω(N log N) Θ(N log N)

Mergesort O(N lg N) Ω(N lg N) Θ(N lg N)

Quicksort O(N2) Ω(N lg N) Θ(N lg N)
Heapsort O(N log N) Ω(N log N) Θ(N log N)

Algorithm Stbl? In-Place? Space

Selection
Sort

N Y O(1)

*Insertion
Sort

Y Y O(1)

Shellsort N Y O(1)
**Quicksort N Y O(log N)
Mergesort Y N O(N)
Heapsort N Y O(1)

* depends on order of items
** probabilistic guarantee

Tilde Approximation

lim
n→∞

∼ f(n)

f(n)
= 1

TL;DR drop everything but the most
significant factor in terms of n.
Order of growth – Just drop the constant
from the tilde approximation

Time Complexity
Notation Definitions

- O(g(n)) – upper limit
- Ω(g(n)) – lower limit
- Θ(g(n)) – upper and lower limit

for(i=0;i<n;i++) - O(n)

for(i=0;i<n;i=i+2) - n/2 O(n)

for(i=n;i>i;i--) - O(n)

for(i=1;i<n;i=i*2) - O(log_2 n)

for(i=1;i<n;i=i*3) - O(log_3 n)

for(i=n;i>1;i=i/2) - O(log_2 n)

Let c1, c2 > 0 and n0 ≥ 0 s.t. for all n ≥ n0,

0 ≤f(n) ≤ c1g(n) ⇒ f(n) ∈ O(g(n))

c1g(n) ≤f(n) ⇒ f(n) ∈ Ω(g(n))

c1g(n) ≤f(n) ≤ c2g(n) ⇒ f(n) ∈ Θ(g(n))

Limit Definitions

lim
n→∞

f(n)

g(n)
̸= ∞ ⇒ f(n) ∈ O(g(n))

lim
n→∞

f(n)

g(n)
̸= 0 ⇒ f(n) ∈ Ω(g(n))

lim
n→∞

f(n)

g(n)
̸∈ {0,∞} ⇒ f(n) ∈ Θ(g(n))

Memory Complexity
In-place algorithms: N + O(lnN)
Mergesort:
- Original input array: N.
- Aux array for merging: O(N).
- Local variables: Const.
- Function call stack: O(log N).
- Total: O(2N log N).

Union-Find
Mutually connected nodes are called
components.

API
• Connected(n id1, n id2): returns true

if n id1 and n id2 are connected.

• Union(n id1, n id2): if not connected,
connects two nodes

• Find(n id): takes node id, returns
union n id is in

• Count(n id): return the size of n id’s
union

Time Complexity

Algo Q-F Q-U WQ-U

Initialization O(N) O(N) O(N)
Find O(1) O(N) O(lg(N))
Connected O(1) O(N) O(lg(N))
Union O(N) O(N) O(lg(N))

Quick-Find
- Associate nodes with unions
- represented with an array
- Indices are node ids
- Values are union ids (we choose one node id
for the union id)

Initialization

Initialize an length N array arr with arr[i] = i.

Union(n id1, n id2)

Change every occurance of n id1 to n id2 in arr.

Find(n id)

returns arr[n id].

Connected

returns if arr[n id1] == arr[n id2].

Quick-Union
- Associate nodes with other nodes
- nodes point to their parent node, which lead
to the root node/union id
- root nodes point to themselves

Initialization

Initialize a length N array arr with arr[i] = i.

Union

Takes indices p and q, finds the root nodes. If
they are not equal, make one point to the other.

Find

Takes an index i, finds arr[i] until the root
node. Returns the root node id.

Connected

Takes an indices p and q, finds the root nodes.
Returns true if they are equal.
Given a class with an int array id

Quick-Union(N)

1 id = IntegerArray(N)
2 for i = 0 to N
3 id[i] = i

find(i)

1 while not id[i] == i
2 i = id[i]
3 return i

union(p, q)

1 i = find(p)
2 j = find(q)
3 id[i] = j

connected(p, q)

1 return find(p) = = find(q)

Weighted Quick-Union

To optimize Quick-Union, we try to create the
flattest trees possible. We need another array
to count the number of nodes rooted at an
index. Union now links the root of the smaller
tree to the root of the larger tree. This can be
further optimized with path compression, which
can be tacked on to find. To do this, we change
each node to point at it’s grandparent.

Given a class with an int array id and an int
array sz

union(p, q)

1 i = find(p)
2 j = find(q)
3 id[i] = j
4 if sz [i] < sz [j]
5 id[i] = j
6 sz [j] = sz [i]
7 else id[j] = i
8 sz [i] = sz [j]

Bad Sorts

Selection Sort

Build up a sorted section of array, by

1. Find min element

2. Swap min & first element

3. Examine array, skipping first element.

Pros: Minimal number of write operations (eg

tiny RAM?) Cons: Slow as shit Θ(N2)

Insertion Sort

• Start from 2 elements, build up sorted
subarray, ”inserting” a new element
each iteration by swapping until it is in
the right position.

• # of operations depends on the degree
of disorder (how unsorted the array is).

Pros: If the array has a low degree of disorder,
it is faster. Cons: Worst case is still slow as
shit.

Ω(N), O(n2)

Shellsort

• Pick every h elements and put them in a
subarray.

• Sort the subarrays using insertion sort.

• Repeat until h = 1.

Pros: Used when: in embedded systems
applications from using small program size and
memory efficiency. Reduces large amounts of
disorder quickly. Cons: Slow

public c lass She l l {
public stat ic void s o r t (

↪→ Comparable [] a) {
int N = a . length ;
int h = 1 ;
while (h < N/3) h = 3 ∗ h + 1 ;
while (h >= 1) {

for (int i = h ; i < N; i++) {
for (int j = i ; j >= h &&

↪→ l e s s (a [j] , a [j−h]) ;
↪→ j −= h)

exch (a , j , j−h) ;
}
h = h / 3 ;

}
}

}

Good Sorts
Mergesort
Divide array in half recursively, until it is down
to 1 element. Merge array together like a
zipper.
Time Complexity: O(n log n)
Memory Complexity: O(N)

Code

private stat ic void merge (
↪→ Comparable [] a , Comparable
↪→ [] aux , int lo , int mid ,
↪→ int hi) {

// c o p y
for (int k = lo ; k <= hi ; k++)

aux [k] = a [k] ;
// merge
int i = lo , j = mid + 1 ;
for (int i = lo ; k <= hi ; k++) {

i f (i > mid)
a [k] = aux [j ++];

else i f
(j > hi) a [k] = aux [i ++];

else i f
(l e s s (aux [j] , aux [i])) a [k] =

↪→ aux [j ++];
else

a [k] = aux (i++) ;
}

}

private stat ic void s o r t (Comparable
↪→ [] a , Comparable [] aux , int
↪→ lo , int hi) {

i f (h i <= lo) return ;
int mid = lo + (hi − l o) / 2 ;
s o r t (a , aux , lo , mid) ;
s o r t (a , aux , mid+1, h i) ;
merge (a , aux , lo , mid , h i) ;

}

public stat ic void s o r t (Comparable
↪→ [] a) {

Comparable [] aux = new Comparable
↪→ [a . l ength] ;

s o r t (a , aux , 0 , a . l ength − 1) ;
}

Top-down vs Bottom-up TL;DR

Top-down uses recursion: starts at top of tree
and proceeds downwards. Bottom-up does not
use recursion: starts at bottom of tree and
iterates over pieces moving upwards.

Bottom-up

Pass through array, merging as we go to double
size of sorted subarrays. Keep performing the
passes and merging subarrays, until you do a
merge that encompasses the whole array.

public c lass MergeBU {
private stat ic Comparable [] aux ;
// s e e a b o v e f o r merg e () c o d e
public stat ic void s o r t (

↪→ Comparable [] a) {
int N = a . length ;
aux = new Comparable [N] ;
for (int sz = 1 ; sz < N; sz =

↪→ sz + sz) // s z :
↪→ s u b a r r a y s i z e

for (int l o = 0 ; l o < N − sz ;
↪→ l o += sz + sz) // l o
↪→ : s u b a r r a y i n d e x

merge (a , lo , l o+sz −1, Math .
↪→ min(l o+sz+sz −1, N
↪→ −1)) ;

}
}

Min Top-down Comparisons
Proposition: Top-down mergesort uses between
1/2NlogN and NlogN comparisons.
Let the total number of comparisons be C(N):
C(⌈N/2⌉) = left recursion, C(⌊N/2⌋) = right
recursion, cN = comparisons at this level,
C(N) ≤ C(⌈N/2⌉) + C(⌊N/2⌋) + cN. The
smallest number of comparisons made by
MERGE is N/2. If one sub-array contains all
the smallest elements, we only walk that array
before appending the other. If you sort a sorted
array, this would be the case at every level.
Solving the above recursion with c = 1/2 yields
C(N) = 1/2NlogN
Max top-down Comparisons:
Similarly, the maximum number of comparisons
is made when both sub-arrays must be fully
examined. If the input array is of size N , then
at most N comparisons are made. If the above
happens at every level of the recursion, the
total number of comparisons at each level is at
most N. By solving the same recurrance
equation with c = 1, we get C(N) = NlogN
Max top-down Accesses:
Proposition. Top-down mergesort uses at most
6NlogN array accesses to sort an array of length N.
Each merge uses at most 6N array accesses 2N
to copy the sub arrays initially 2N to put the
values back (in order) At most N comparisons,
each accessing two array elements (2N)Hence
the total number of array accesses after solving
the recurrence is most 6NlogN.
Min/Max Bottom Up
Comparisons/Accesses: Proposition. Bottom-up
mergesort uses between 1/2NlogN and NlogN
compares and at most 6NlogN array accesses to sort
an array of length N. The number of passes
through the array is precisely logN . For each
pass, by the same argument made as in the case
of the top-down mergesort approach, the
number of array accesses is exactly 6N and the
number of compares is at most N and no less
than N/2. Therefore, bottom-up mergesort
uses between 1/2NlogN and NlogN compares
and at most 6NlogN array accesses to sort an
array of length N.

Quicksort
1. Shuffle array to reduce impact of order

on sorting speed

2. Pick first element of array as pivot

3. Create two sub arrays from remaining
elements, one selecting those smaller,
one selecting those larger. Put them on
either side of the pivot

4. Recurse for each side of the pivot until
everything is sorted.

p a r t i t i o n (arr , lo , h i) :
p ivot = hi
i = lo
for j from l o+1 to hi :

i f arr [j]<pivot :
swap (ar r [i] , a r r [j])
i++

qu i ck so r t (arr , lo , h i) {
i f lo<hi :

p ivot = pa r t i t i o n (arr , lo ,
↪→ hi)

qu i ck so r t (arr , lo , pivot −1)
qu i ck so r t (arr , p ivot+1, h i)

• Fastest for disordered arrays, slowest for
already sorted arrays

• Randomize array or select a random
piviot to prevent worst case. (Best
choise of a piviot is the median)

• Best case: The partitions are always of
equal size : Ω(NlogN). Recurrence
relation is T (n) = 2T (n/2) + cn.

• Worst case: One partition is always of
size 0 (if the array is already sorted and
we are picking pivots from the ends) :

O(N2). Recurrence relation is
T (n) = T (n − 1) + T (0) + cn.

• Average case: 1.39 log N ∈ Θ(NlogN)

• Uses less memory than merge sort.
Space complexity O(n)

Priority Queues
Supports insertion and removing/popping the
priority (largest or smallest) item.
Implementations:

Sorted Array - O(n) insert, O(1) pop

Unsorted Array - O(1) insert, O(n) pop

Binary Heap - O(log n) insert and sort

Binary Heaps & Heapsort
A max binary heap is a complete binary tree
where the keys are in the nodes and each
parent’s key ≥ each child’s key. This
requirement is called the max heap property.
Binary Heaps:

• Can be represented as array or
tree/nodes.

• Insertion: We insert at the end of the
array, then ”swim up” the value.

• Swimming up - exchange a given node
with it’s parent until the binary max
property is fulfilled.

• Popping - swap the first node (the max)
with the last node, remove it, then
”sink” the first node.

• Sinking - exchange a given node with
the max of it’s children until the binary
max property is fulfilled.

Heapsort relies on the binary heap data
structure to sort data. Once a max heap has
been constructed, you can perform a single for
loop and call RemoveMax to build a sorted
array (thus linearizing the heap).

MaxPQ
isEmpty

return n == 0

insert(Key x)

insert x at pq[n], increment n, then swim(n)

delMax

set max to pq[1], decrement n, exch(1, n),
sink(1), set pq[n+1] to null, return max

swim(int k)

while k > 1 and pq[k/2] < pq[k]: exch(k, k/2),
k = k/2

sink(int k)

while (2k ≤ n): Exchange the parent with the
larger child (children of k are at 2k and 2k+1)

Binary Trees
Binary Tree: A tree where each internal node
has at most two children. Full Binary Tree: A
binary tree where each internal node has
exactly two children. Complete Binary Tree:
A complete binary tree is which every level,
except possibly the last, is completely filled,
and all nodes are as far left as possible.
Internal Node: Any node that has children
L = N − 1, where L is the number of the
internal node in the tree, and N is the number
of leaves.
N = 2h, where h is the height of the tree and
N is the number of nodes in the tree. To go the
other way around, log2(N) = h.
Maximum height: n − 1 Minimum height:
floor(lg n)

Symbol Tables
Operations: Insert a new pair into the table
(set) Search for the value associated with a
given key (get) Equality test required,
inequality operator allows for an ordered
symbol table. Allows for new operations and
faster runtimes at the cost of key monotyping.
Implementations

imp (wrst)
srch

ins del (avg)
srch

ins del ord
ops?

seq N N N .5N N .5N n
bin lg N lg N lg N lg N .5N .5N y

BST N N N 1.39
lg N

1.39
lg N

√
N y

23 c lg N c lg N c lg N c lg N c lg N c lg N y
RB
BST

2 lg N 2 lg N 2 lg N 1.0
lg N

1.0
lg N

1.0
lg N

y

Sequential Search (Unordered LL) Search:
O(N), Insert: O(N) Pros: Best for tiny STs
Cons: Slow for large STs
Binary Search

Binary-Search(A, x)

1 a = 0 // Lower Bound
2 b = A.length − 1 // Upper Bound
3 while a ≤ b
4 m = floor(a + (b − a)/2)
5 if x < A[m]
6 b = m − 1
7 elseif x > A[m]
8 a = m + 1
9 else return m

10 return nil

O(log N) time complexity, and at most
1 + log2 N compares. Search: O(lg N), Insert:
O(N) Pros: Optimal search and space,
order-based operations Cons: Slow insert

Binary Search Trees
Definitions: Depth of Node: length of path
from root to node (root has depth 0) Height of
Node: length of longest path from node to leaf
(leaf has height 0) Height of Tree: length of
longest path from root to leaf (empty tree has
height -1) Degree of Node: number of subtrees
attached to a node (degree of tree is max of
degrees of nodes) Key, value, pointers to left
and right subtrees, N for node count in subtree
(left contains strictly smaller elements, right
contains strictly larger elements)
Find: traverse tree, comparing desired element
to current node’s key (trivial) get() does the
same thing except we return the value / NULL
insert(): traverse tree, inserting node where we
would expect to find it put(): Overwrite value if

key already exists, otherwise add new node.
Comparisons is 1 + depth of node
min(): go all the way left max(): go all the way
right
floor(): largest key less than or equal to key
ceiling(): smallest key greater than or equal to
key
Lazy Deletion: Set value to null, leave key in
tree to guide search
Hibbard Deletion:

• If node to be deleted has no children,
delete it

• If node to be deleted has one child,
replace with child

• If node to be deleted has both children,
replace with minimum key in right
subtree

Traversals

1. Inorder (Left, Root, Right)

2. Preorder (Root, Left, Right)

3. Postorder (Left, Right, Root)

Balanced Search Trees
2-3 Trees
2-nodes have one key and two children 3-nodes
have two keys and three children
Insert: if leaf is a 2-node, make it into a 3-node
If leaf is a 3-node, make a 4 node, and
decompose it into two 2-nodes, passing the
middle element up to the parent (if exists)
Tree height: Worst case: log2 N Best case:
log3 N ≈ .631log2N
See above for time complexity

LLRB Trees
Just a way to encode 2-3 trees more simply
(they exactly correspond). Black links are the
same in both, red links connect values that are
3-nodes in 2-3 trees.
Rules: No node has two red links connected to
it. Every path from root to null link has the
same number of black links - (Perfect Black
Balance) Red links lean left.

Color flip: Turn a 4-node into a 2-node by
flipping the colors of the child links and the
parent link
Height is ≤ 2 log2 N in the worst case See
above for time complexity

Hash Tables
TLDR replace index access with hash function,
use either a probing strategy or chaining to
resolve collisions

Good Hash
Division method h(k) = k mod m hashes k
into one of m slots. A prime number not too
close to 2p is a good choice.
Multiplication method
h(k) = ⌊m(kA mod 1)⌋ Value of m is not
critical, generally picked to be a power of 2 to
make implementation easy. A is a constant
between 0 and 1, and is usually chosen to be√

5−1
2

.

Chaining
Put all elements with the same hash value into
the same linked list. For linked list T , worst
case time complexity is O(1) for insert, O(m)
for search and delete where m = |T |.

Linear Probing
h(k, i) = (h′(k) + i) mod m Where h′(k) is a
hash function, and i is the probe number.
Increment i until an empty slot is found.
Suffers from primary clustering (long runs of
occupied slots tend to build up)

Quadratic Probing
h(k, i) = (h′(k) + c1i + c2i2) mod m Where

h′(k) is a hash function, c1 and c2 are
constants, and i is the probe number. Doesn’t
encounter primary clustering, but two keys with
the same initial probe position leads to the
same probe sequence (secondary clustering).

Double Hashing
h(k, i) = (h1(k) + ih2(k)) mod m Where
h1(k) and h2(k) are hash functions, and i is
the probe number. Doesn’t encounter either
form of clustering. h2 should be relative prime
to m. One way to do this is to let m be prime,
and pick h2 such that it always returns a
positive integer less than m. Eg: h1(k) = k

mod m, h2(k) = 1 + (k mod (m′)), where m′
is a prime less than m (eg m − 1)

Undirected Graphs
If an edge exists between two vertices, they are
adjacent, and the edge is incident to both
verticies. Degree of vertex is number of edges
incident to it. Two edges that connect the
same pair of vertices are parallel.
Adjacency-matrix: 2D V by V boolean array
Adjacency-list: Vertex-indexed array of lists,
each list element is adjacent to index. Can be
implemented with a list of Bags, allowing for
parallel and self loops.

DFS
Simple, used to find all vertices connected to a
source, or to find a path between two vertices.

DFS(G, v)

1 marked[v] = true
2 for i = 0 to adj(G, v). length
3 w = adj(G, v)[i]
4 if marked[w] == false
5 edgeTo[w] = v
6 DFS(G,w)

Time Complexity → O(|V | + |E|)

BFS
Used to find the shortest path between two
vertices.

BFS(G, s)

1 queue = newQueue()
2 marked[s] = true
3 enqueue(queue, s)
4 while isEmpty(queue) == false
5 v = dequeue(queue)
6 for i = 0 to adj(G, v). length
7 w = adj(G, v)[i]
8 if marked[w] = = false
9 edgeTo[w] = v

10 marked[w] = true
11 enqueue(queue, w)

Time Complexity → O(|V | + |E|)

Connected components
Init all vertices v as unmarked, for each
unmarked vertex v, run DFS to find all
vertic1es connected to v. Space and time
proportional to (V + E): each adjacenty list
entry is examined only once, and there are 2E
such entries (two for each edge). If
preprocessing is viable, it is faster than
union-find. However, union-find is online, and
as such can be used when doing few queries, or
when data is not already structured as a graph.

Directed Graphs
Terminology
Indegree → number of edges pointing to a
vertex
Outdegree → number of edges pointing away
from a vertex

API
same as undir graphs, except we have
reverse() which produces a new graph with all
edges reversed.

Topological Sort
same as DFS, except when you hit a node that
has no adjacent nodes, add that node to a list
post[]. After DFS is over, reverse the list,
that’s your topological order

Multiple-source shortest paths:
Given digraph and set of source vertices, find
shortest path from and V ∈ set to each other
vertexes.

• Do BFS but initialize by enqueing all
source vertices to queue

• keeps track using edgeTo[] to find
shortest path among nodes

Reverse Postorder:
Do DFS, but add vertices to a stack as soon as
you mark them as visited. When DFS is over,
pop the stack to get the reverse postorder.

Strongly connected components:
Two vertices are strongly connected if there is
a directed path from v to w and from w to v.
In a DAG, we can have atmost V strongly
connected components.

Kosaraju algo (Find strong
components in a dir graph)

• Run DFS on Gr and compute reverse
post order

• Run DFS on G, considering verticies in
ordere given by the reverse post order

MSTs
Edge-weighted graph: Undirected graph
model where weights/costs are associated with
each Edge
Kruskals and Prim’s used to find MSTs
(minimum spanning trees) Difference: Prim’s
uses a PQ, Kruskal’s uses a greedy approach

Kruskal’s
1. use a min priority queue P to store

edges O(|E|) for init

2. pop the min edge from P . O(|E| log |E|)
in total

3. while examining an edge, check for
cycle. O(|E| + |V |) in total

4. if e does not create a cycle, then add e
to T

Total Time complexity of O(|E| log |E|)
checking for cycles: use union find. if v and w
are in the same component, then adding v − w
creates a cycle

Prim’s
Start with vertex 0 and greedily grow tree T
Consider edges incident on verticies in T , but
disregard edges with both end points in T
Add T to min weighted edge with exactly one
endpoint in T
Repeat until V − 1 edges.
Lazy: Maintain a PQ of edges with at least one
endpoint in T
Key = edge; priority = weight of edge
Delete-min edge e = v − w from PQ to find
next edge to add to T
Disregard if both endpoints are marked (in T)
Otherwise, let w be the unmarked vertex:
- add to PQ any edge incident to w (assuming
other endpoint not in T)
- add e to T and mark w

operation frequency binary heap

delete min E log E
insert E log E

Eager: Maintain a PQ of verticies connected
by an edge to T, where priority of vertex
v = min. weighted edge connecting v to T
Delete min vertex v, mark v to be in T
Update PQ by considering all edges e = v − x
incident to v - ignore if x is already in T
- add x to PQ if not already there

- if already on PQ, then reduce priority of x if
v − x becomes the min. weighted edge
connecting x to T
Uses extra space proportional to |V | and time
proportional to |E| log |V | (worst case) for E
edges and V vertices.

	Algorithms
	Basic DSes
	Linked Lists
	Operations

	Runtime Analysis
	Sorting Algorithm Info
	Tilde Approximation
	Time Complexity
	Notation Definitions
	Limit Definitions

	Memory Complexity

	Union-Find
	API
	Time Complexity
	Quick-Find
	Initialization
	Union(n_id1, n_id2)
	Find(n_id)
	Connected

	Quick-Union
	Initialization
	Union
	Find
	Connected

	Weighted Quick-Union

	Bad Sorts
	Selection Sort
	Insertion Sort
	Shellsort

	Good Sorts
	Mergesort
	Code
	Top-down vs Bottom-up TL;DR
	Bottom-up

	Quicksort

	Priority Queues
	Binary Heaps & Heapsort
	MaxPQ
	isEmpty
	insert(Key x)
	delMax
	swim(int k)
	sink(int k)

	Binary Trees
	Symbol Tables
	Binary Search Trees
	Balanced Search Trees
	2-3 Trees
	LLRB Trees

	Hash Tables
	Good Hash
	Chaining
	Linear Probing
	Quadratic Probing
	Double Hashing

	Undirected Graphs
	DFS
	BFS
	Connected components

	Directed Graphs
	Terminology
	API
	Topological Sort
	Multiple-source shortest paths:
	Reverse Postorder:
	Strongly connected components:
	Kosaraju algo (Find strong components in a dir graph)

	MSTs
	Kruskal's
	Prim's

