Algorithms
Basic DSes

Array vs LL

Arrays: Static data sets, ones where fast index-based access

is needed, Slow expansion, insertion, deletion. LLs:
Dynamic data sets, insertion & deletion more important
than random access.

Linked Lists

class Node {
Item item;
Node next;

Node prev; // for DLL

}

Operations

Search O(N)
Prepend / Append O(1)
Delete O(N)

Runtime Analysis

constant 1
logarithmic log N
linear N
linearithmic N log N
quadratic N2
cubic N3
exponential 2N

Sorting Algorithm Info

Algorithm O(N) Q(N) O(N)
Selection Sort ~ O(N?Z) Q(N2) O(N?2)
Insertion Sort O(NZ2) Q(N) o(N?2)
Shellsort < O(N?2) Q(N log N) ©(N log N)
Mergesort O(Nl1g N) Q(Nl1g N) ©(Nlg N)
Quicksort O(N?2) Q(Nlg N) ©(NlgN)
Heapsort O(N log N) Q(N log N) ©(N log N)
Algorithm Stbl? In-Place? Space

Selection Sort N Y o(1)

*Insertion Sort Y Y o(1)

Shellsort N Y o(1)

**Quicksort N Y O(log N)
Mergesort Y N O(N)

Heapsort N Y O(1)

* depends on order of items
** probabilistic guarantee

Tilde Approximation
~ f(n)
ll>m —_— =1
TR f(n)
TL;DR drop everything but the most significant factor in
terms of n.
Order of growth — Just drop the constant from the tilde
approximation

Time Complexity
Notation Definitions

- O(g(n)) — upper limit
- Q(g(n)) — lower limit
- ©(g(n)) — upper and lower limit

Let ¢1,¢g > 0 and ng > 0 s.t. for all n > ng,

= f(n) € O(g(n))
= f(n) € Q(g(n))
= f(n) € ©(g(n))

0 <f(n) < c1g(n)
c19(n) <f(n)
c19(n) <f(n) < cag(n)

2Co03

Limit Definitions

f(n
olim EAS2) # oo = f(n) € O(g(n))
g(n)
olim fm) #0 = f(n) € Q(g(n))
g(n)
) f(n)
plim e & {0, 00} = f(n) € ©(g(n))

Memory Complexity

In-place algorithms: O(N log N)
Mergesort:

- Original input array: N.

- Aux array for merging: O(N).

- Local variables: Const.

- Function call stack: O(log N).

- Total: O(2N log N).

Recurrence Relations

Recurrence Relation — a recursive equation.

Deriving from a Tree — Represent the recurrence equation
as a binary tree, where each layer is one layer deeper in the
recursion. Eg if the equation is T(N) = T(N/2) + T(N/2),
there will be 2 branches on the second layer, each as
T(N/2), 4 branches on the third layer, each as T(N/4), and
so on. If it’s a binary tree, with z layers, it will have a time
complexity of nlog .

Proposition. If D(N) satisfies D(N)= 2D(N/2) + N for N >1, with D(1)=0,
then D(N) = NIgN.

Pf 1. [assuming N is a power of 2]

b N =N
D(N/2) D(N/2) 2(NR) =N
/N N\
DN/ 4) D(N/4) DN/ 4) DN/ 4) 44y N
AV AT AT
D(N/8) DIN/8) DIN/8) DIN/8) D(N/8) DN/8) DN/8) D(N/8) 8(N/8) N

V) = NigN

If you're seeing this, please contribute!
Master Theorem
For an RR with the form T'(n) = aT(n/b) + f(n), for

constants a(> 1) and b(> q) with f asymptotically positive,
the following statements are true:

Case 1 If f(n) = O(n!®8b =€) for some e > 0, then
T(n) = ©(nl°8b @),
Case 2 If f(n) = ©(n!°8b @), then T(n) = ©(n!°8b % logn).
Case 3 If f(n) = 2(nl°8b ¢1€) for some ¢ > 0 (and
af(n/b) < cf(n) for some ¢ < 1 for all n sufficiently large),
then T(n) = ©(f(n)).
Union-Find
WARNING: !ICODE DOES NOT IMPLEMENT COUNT!
Mutually connected nodes are called components.
API

e Connected(n_id1, n_id2): returns true if n_idl and

n_id2 are connected.

e Union(n-id1, n_id2): if not connected, connects two
nodes

e Find(n_id): takes node id, returns union n.id is in

e Count(n_id): return the size of n_id’s union

Time Complexity

Algo Q-F Q-U WQ-U
Initialization ~ O(N) O(N) O(N)
Find o(1) O(N) O(g(N))
Connected O(1) O(N) O(lg(N))
Union O(N) O(N) O(lg(N))

Quick-Find

- Associate nodes with unions

- represented with an array

- Indices are node ids

- Values are union ids (we choose one node id for the union
id)

Initialization

Initialize an length N array arr with arr[i] = i.
Union(n_id1, n_id2)

Change every occurance of n_idl to n_id2 in arr.
Find(n_id)

returns arr[n-id].

Connected

returns if arr[n-id1] == arr[n.id2].

Quick-Union

- Associate nodes with other nodes

- nodes point to their parent node, which lead to the root
node/union id

- root nodes point to themselves

Initialization
Initialize a length N array arr with arr[i] = i.
Union

Takes indices p and q, finds the root nodes. If they are not
equal, make one point to the other.

Find

Takes an index i, finds arr[i] until the root node. Returns
the root node id.

Connected

Takes an indices p and q, finds the root nodes. Returns true
if they are equal.

public class QuickUnion {
private int[] id;

public QuickUnion (int N) {

id = new int [N];
for(int i = 0; i < N; i++)
id[i] = i3
public int find (int i) {
while (i != id[i]) {
i = id[i]
return i;
public void union(int p, int q) {
int i = find (p);
int j = find(q);
id[i] = j;

public boolean connected (int p,
return find (p) == find (q);
}

int q) {

}
Weighted Quick-Union

To optimize Quick-Union, we try to create the flattest trees
possible. We need another array to count the number of
nodes rooted at an index. Union now links the root of the
smaller tree to the root of the larger tree. This can be
further optimized with path compression, which can be
tacked on to find. To do this, we change each node to point
at it’s grandparent.

public class WeightedQuickUnionWithPC {
private int[] id;
private int[] sz;

public void union(int p,
int i = find(p);
int j = find(q);
i) = j;
if (sz[i] < sz[j]

—] = sz [i
else (sz[i] < sz]|
—] 4= sz[j

int q) {

a
I

sz []
sz [i
public int find (int
while (i != id]|
id[i] = id]

io= id[i];

return i;

Bad Sorts

Selection Sort
Build up a sorted section of array, by

1. Find min element
2. Swap min & first element
3. Examine array, skipping first element.

Pros: Minimal number of write operations (eg tiny RAM?)
Cons: Slow as shit ©(N2)

Insertion Sort
e Start from 2 elements, build up sorted subarray,
”inserting” a new element each iteration by swapping
until it is in the right position.

o # of operations depends on the degree of disorder
(how unsorted the array is).

Pros: If the array has a low degree of disorder, it is faster.
Cons: Worst case is still slow as shit.

NECDEEE

Q(N), O(n?)

Shellsort
e Pick every h elements and put them in a subarray.
e Sort the subarrays using insertion sort.
e Repeat until h = 1.

Pros: Used when: in embedded systems applications from

using small program size and memory efficiency. Reduces
large amounts of disorder quickly. Cons: Slow

begin h = 3 sort

—~ insertion sort g 2
BEETT3E —» - exams : 3
rtion s swaps: 0

EEFEFGE — Ef ——— oxams : 1
insertion sort swaps: 1

ERAI7[6[7[3]8] — [7I3] exams : 1

= 3 sorted

E[3Ie[7[7]9]

Begin h = 2 sort i i
.0 insertion sort SWi 0
E:Ble[77[8] — - > axarhs : 3

insertion sort swaps: 0

exams : 2

(Ll BErI7[e] —

h= 2 sorted

[L[[3[6[7[7]0]

)beg"m h=1sort

[EBErTE]
insertion sort

swaps: 1

EEEEREE Cn:

public class Shell {
public static void
int N = a.length;

int h = 1;
while (h < N/38) h = 38 = h + 1;

sort (Comparable []

a) {

while (h >= 1) {
for (int i = h; i < N; i+4)
for (int j = i; j >= h && less(a[j],
< alj—h]); j —= h)
exch(a, j, j—h);

}
h=h/ 3;

Good Sorts

Mergesort

Divide array in half recursively, until it is down to 1
element. Merge array together like a zipper.

Time Complexity: O(n logn)

Memory Complexity: O(N)

Code

private static void
<~ Comparable []
< int hi) {

merge (Comparable [] a,
aux, int lo, int mid,

// copy
for (int k = lo; k <= hi; k++)
aux [k] = a[k];
// merge
int i = lo, j = mid + 1;
for (int i lo; k <= hi; k++4+) {
if (i > mid)
alk] = aux[j++I;
else if
(i > hi) a[k] = aux[i++];
else if
(less (aux[j], aux[i])) a[k] = aux[]
— 4+
else
alk] = aux(i++);
}
}
private static void sort (Comparable[] a,
s Comparable [] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi — lo) / 2;
sort (a, aux, lo, mid);
sort (a, aux, mid+1, hi);
merge (a, aux, lo, mid, hi
}
public static void sort(Comparable[] a)
Comparable [] aux = new Comparable[a.length
— H
sort(a, aux, 0, a.length — 1);

Top-down vs Bottom-up TL;DR

Top-down uses recursion: starts at top of tree and proceeds
downwards. Bottom-up does not use recursion: starts at
bottom of tree and iterates over pieces moving upwards.
Bottom-up

Pass through array, merging as we go to double size of
sorted subarrays. Keep performing the passes and merging
subarrays, until you do a merge that encompasses the whole
array.

public class MergeBU {

private static Comparable[] aux;
// see above for merge() code
public static void sort(Comparable[] a) {
int N = a.length;
aux = new Comparable [N];
for (int sz = 1; sz < N; sz = sz + sz)
— // sz: subarray size
for (int lo = 0; lo < N — sz; lo += sz

— 4+ sz) // lo: subarray index
merge(a, lo, lo+sz—1, Math.min(lo+sz
— +4sz—1, N—1));
}
}

Min Top-down Comparisons

Proposition: Top-down mergesort uses between 1/2NlogN and
NlogN comparisons.

Let the total number of comparisons be C(N) C([N/2]) =
left recursion, C(| N/2]) = right recursion, ¢cN =
comparisons at this level,

C(N) < C([N/2]) + C(LN/2]) + ¢N. The smallest number
of comparisons made by MERGE is N/2. If one sub-array
contains all the smallest elements, we only walk that array
before appending the other. If you sort a sorted array, this
would be the case at every level. Solving the above
recursion with ¢ = 1/2 yields C(N) = 1/2NlogN

Max top-down Comparisons:

Similarly, the maximum number of comparisons is made
when both sub-arrays must be fully examined. If the input
array is of size N , then at most N comparisons are made.
If the above happens at every level of the recursion, the
total number of comparisons at each level is at most N. By
solving the same recurrance equation with ¢ = 1, we get
C(N) = NlogN

Max top-down Accesses:

Proposition. Top-down mergesort uses at most 6NlogN array
accesses to sort an array of length N. Each merge uses at most
6N array accesses 2N to copy the sub arrays initially 2N to
put the values back (in order) At most N comparisons, each
accessing two array elements (2N)Hence the total number of
array accesses after solving the recurrence is most 6 NlogN.
Min/Max Bottom Up Comparisons/Accesses:
Proposition. Bottom-up mergesort uses between 1/2NlogN and
NlogN compares and at most 6 NlogN array accesses to sort an
array of length N. The number of passes through the array is
precisely logN . For each pass, by the same argument made
as in the case of the top-down mergesort approach, the
number of array accesses is exactly 6 N and the number of
compares is at most N and no less than N/2. Therefore,
bottom-up mergesort uses between 1/2NlogN and NlogN
compares and at most 6 NlogN array accesses to sort an
array of length N.

Quicksort
1. Shuffle array to reduce impact of order on sorting
speed

2. Pick first element of array as pivot

3. Create two sub arrays from remaining elements, one
selecting those smaller, one selecting those larger.
Put them on either side of the pivot

4. Recurse for each side of the pivot until everything is
sorted.

partition (arr, lo, hi):
pivot = hi
i = lo
for j from lo+1 to hi:

if arr[j]<pivot:

swap(arr[i], arr[j])
i+
quicksort (arr, lo, hi) {
if lo<hi:
pivot = partition (arr, lo, hi)
quicksort (arr, lo, pivot—1)

quicksort (arr, pivot+41, hi)

e Fastest for disordered arrays, slowest for already
sorted arrays

e Randomize array or select a random piviot to prevent
worst case. (Best choise of a piviot is the median)

e Best case: The partitions are always of equal size :
Q(NlogN). Recurrence relation is
T(n) = 2T (n/2) + cn.

e Worst case: One partition is always of size 0 (if the
array is already sorted and we are picking pivots
from the ends) : O(NZ2). Recurrence relation is
T(n) = T(n — 1) + T(0) + cn.

e Average case: 1.39 log N € ©(NlogN)

e Uses less memory than merge sort.
O(n)

Space complexity

Priority Queues

Supports insertion and removing/popping the priority
(largest or smallest) item.
Implementations:

Sorted Array - O(n) insert, O(1) pop
Unsorted Array - O(1) insert, O(n) pop

Binary Heap - O(log n) insert and sort

Binary Heaps & Heapsort

A max binary heap is a complete binary tree where the keys
are in the nodes and each parent’s key > each child’s key.
This requirement is called the max heap property.

Binary Heaps:

e Can be represented as array or tree/nodes.

o Insertion: We insert at the end of the array, then
7”swim up” the value.

e Swimming up - exchange a given node with it’s
parent until the binary max property is fulfilled.

e Popping - swap the first node (the max) with the last
node, remove it, then ”sink” the first node.

e Sinking - exchange a given node with the max of it’s
children until the binary max property is fulfilled.

Heapsort relies on the binary heap data structure to sort
data. Once a max heap has been constructed, you can
perform a single for loop and call RemoveMax to build a
sorted array (thus linearizing the heap).

Code

public class MaxPQ<Key extends Comparable<
— Key>> {
private Key[] pq;
private int n;

public MaxPQ(int capacity) {
/) fized capacity for simplicity
pg = (Key[]) new Comparable[capacity +1];

public boolean
return

isEmpty () {
n == 0;

public void insert (Key x) {
pa[++n] = x;

swim (n) ;

public Key delMax () {

Key max = pq[1];
exch (1, n——);
sink (1) ;

pgq[n+1] == null;
return max;

}

private void swim(int k) {
// parent of mode at k is at k/2

while (k > 1 && less (k/2, k)) {
exch(k, k/2);
k = k/2;

}

private void sink(int k) {

while (2xk <= n) {
int j = 2xk;
// children of node at k are 2xk and

— 2xk+1

if (j < n && less(j, j+1)) j++;

if (1less (k,
exch(k, j);
k = j;

j)) break;

Binary Trees

Binary Tree: A tree where each internal node has at most
two children. Full Binary Tree: A binary tree where each
internal node has exactly two children. Complete Binary
Tree: A complete binary tree is which every level, except
possibly the last, is completely filled, and all nodes are as
far left as possible. Internal Node: Any node that has
children

L = N — 1, where L is the number of the internal node in
the tree, and N is the number of leaves.

N = 2" where h is the height of the tree and N is the
number of nodes in the tree. To go the other way around,
logoa (N) = h.

Maximum height: n — 1 Minimum height: floor(lg n)

Pseudocode

INSERTION-SORT (A)
1 for j = 2 to A.length

2 key = Alj]

3 // Insert A[j] into the sorted sequence A[l..j — 1].
4 i =3j—1

5 while i > 0 and A[i] > key

6 AL+ 1] = A[i]

7 =i —

8 Ali +1] = key

Reminders:

e Attributes can be accessed via x.prev.

e Class functions do not exist in pseudocode.
Instead of calling x.sort(), call sort(x).

e Use NIL instead of null.

e State assumptions like passing by value or passing by
reference in the pseudocode.

e Multiple values can be passed in a return statement.

o Use error for throwing an error, but what happens is
not specified.

	Algorithms
	Basic DSes
	Linked Lists
	Operations

	Runtime Analysis
	Sorting Algorithm Info
	Tilde Approximation
	Time Complexity
	Notation Definitions
	Limit Definitions

	Memory Complexity
	Recurrence Relations
	Master Theorem

	Union-Find
	API
	Time Complexity
	Quick-Find
	Initialization
	Union(n_id1, n_id2)
	Find(n_id)
	Connected

	Quick-Union
	Initialization
	Union
	Find
	Connected

	Weighted Quick-Union

	Bad Sorts
	Selection Sort
	Insertion Sort
	Shellsort

	Good Sorts
	Mergesort
	Code
	Top-down vs Bottom-up TL;DR
	Bottom-up

	Quicksort

	Priority Queues
	Binary Heaps & Heapsort
	Code

	Binary Trees
	Pseudocode

