
Logic Basics
Ohm’s Law: R = U

T
U = electrical potential (volts, V) R =
resistance (ohms, ω) I = current, voltage
drop (amps, A)

Transistors
MOSFETs have 4 components: Source,
Gate, Drain, and Base
PNP/NMOS: Is on when gate is
positive. No circle.
NPN/PMOS: Is on when gate is
negative. Has circle.
Generally, transistors are used to pull
the output to either a positive voltage,
or a zero voltage (1 or 0, on or off). If
output is not pulled to one of these, the
output is floating and is indeterminate in
voltage.

Logic Circuits
Symbols (bottom have 2 inputs)

Adders

Left: Half-adder. Right: Full-adder.

Unlike half-adders, full-adders can
receive carry-in bits. To add more bits,
chain multiple full-adders together. If
final carry at end is 1, there’s an
overflow error.

Latches & Flip-flops

Flip-flop Every time the input switches
from 0 to 1, the output switches to the
opposite.
Gated D-latch

E/C D Q Q

0 X Qprev Qprev No change
1 0 0 1 Reset
1 1 1 0 Set

• Q - The stored bit
• D - Data/bit to write to Q
• E - The enabler (Must be 1 to enable

writing, otherwise nothing changes)
• Operate on the principle of

propagation delay.
• Stacking many of them can be used to

create a register:

Counters
For each transition from low to high,
the counter increments the binary output
by 1. (Counting the transition from high
to low does the same thing, but the
lecture used rising-edge counters).

Propagation Delay
The rate at which a transistor switches.
Typical 100 ps (picoseconds) Clock
Frequency: = 1/f

Decoders
Take in an n-bit number, and turn on
one of 2n outputs.

Feedback Loops

• Counter increments each time the
clock changes from 0 to 1

• Decoder moves to the next instruction
each time

• Stop sends a signal back to the and
gate which stops counter

Multiplexer / Demultiplexer
Multiplexer turns n signals into a single
signal. Chooses which signal to let
through. Demultiplexer turns a single
signal into n signals. The single signal
chooses which signal to output.

Software vs Hardware Design
Unlike software, which uses iteration,
hardware uses replication. The
advantages of replication are increased
elegance, higher speed, and increased
reliability. Hardware also uses gate
minimization, abstraction and power
optimization.

Fixed & Programmable Logic
Fixed logic circuits: Pre-determined
function. Programmable logic: FPGAs
(reprogrammable, but still a significant
cost to switching functions). Stored
program and re-programmable
circuits: Your computer right now.

Data Encoding
1 Byte = 8 bits. 1 Byte encodes a
character, integer, or pointer. 1 Word is
n bytes, determined by the architecture.

Converting between bases
Base 10 to Base N Divide decimal # by
of new base. Take remainder as
rightmost digit. Divide quotient of
previous divide by new base. Repeat
until quotient is zero. Base N to Base
10 Take each column position of each
digit, zero indexed, as n. For each
column, do c · bn, where c is the value of
the column, and b is the base value in
base 10.
Important bases table

Hex Bin Dec

0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7

Hex Bin Dec

8 1000 8
9 1001 9
A 1010 10
B 1011 11
C 1100 12
D 1101 13
E 1110 14
F 1111 15

Important Bytes Table

1 Bit 8 Bits
1 byte = 23 bits

1 KBit = 103 bits 1 Kb = 210 bytes
1 MBit = 106 bits 1 Mb = 220 bytes
1 MBit = 109 bits 1 Gb = 230 bytes

Fraction to Binary
1. Let x be the decimal part of our

fraction.
2. Let b be our binary output.
3. Multiply x by 2.
4. If x ≥ 1, subtract 1 from x and

append 1 to b.
5. If x < 1, append 0 to b.
6. Goto step 3 until x! = 0.

Signed Integers
• Two’s complement: Flip all bits, add

1. Range is −(2n−1),+(2n−1 − 1)
• Sign-magnitude: First bit is sign,

rest is magnitude. Range is

−(2n−1 − 1),+(2n−1 − 1).
• One’s complement: Flip all bits. Eg,

+6 is 0110, so to get -6 go from
0110 → 1001 → 1010. This has 2 zero,
positive and negative zero. Range is

−(2n−1 − 1),+(2n−1 − 1).

Cast from Ints
from smaller into to bigger ints
sign-magnitude: Copy the MSB to the
bigger ints MSB. Then take the
remaining bits and fill them from the
right to left.
one’s complement and two’s
complement: Copy the Lowest order
bits (the bits except the sign defining
bit) and copy them to the other ints
lowest order bits.
Take the MSB and make all the
remaining bits in the new int the MSB.

IEEE-754 Floats
Can represent values from 2−126 to 2127

which is 10−38 to 1038 in decimal. If
double precision is used then the range is

2−1022 to 21023 which is 10−308 to
10308 in decimal. Separated into sign,
exponent, and mantissa. Entire float is
represented in binary, and the exponent

is biased by 2b−1 − 1, where b is the
number of exponent bits. Leading 1 is
dropped from mantissa. To calculate

from IEEE, do 1.(m2) × 2(e2). (Convert
out of base 2 first). Range is

approximately 2(−2b)+2, 22
b−1, where

b is the bits dedicated to the exponent,
minus 1.

Special Values

Exponent Mantissa Value

all 1s all 0s ±∞
all 1s not all 0s NaN
all 0s not all 0s denormalized
all 0s all 0s ±0

Binary-coded decimals
Instead of representing decimals using a
float, use an arbitrarily long string of
bytes, usually as binary ints. Efficiency
can be improved using packed BCDs, by
putting 2 ints in one byte (each digit
occupying a nibble). 0x2D is used by the
textbook to represent a negative, placed
at the end of the BCD. For a packed
BCD, drop the 2.

Endianess
Endian: The way in which words(group
of bytes) are stored in memory. Big
Endian: Most significant byte first.
Little Endian: Least significant byte
first. Little endian is the most common
method of storing data in memory.

Types of architecture
Von Neumann architecture (left):
• Single memory block which contains

both instructions and data.
• Offers complete flexibility: at any

time, owner can change how much of
the memory is devoted to programs
and how much to data.

• More popular.
• Allows dynamically allocating memory

between instructions and data.

Harvard architecture (right):

• 2 separate memory. One is used for
instruction, one is used for data.

• Inflexible, as you cannot use part of
the instructional memory to store data
and vise versa.

• Less popular. Sometimes used in small
embedded systems.

Von Neumann Bottleneck

On computers running Von Neumann
Architecture, time spent accessing
memory can limit performance. To avoid
the bottleneck, designs are chosen where
operands are moved to registers instead
of system memory.

Types of processors

A processor is a digital device that can
perform a computation involving
multiple steps.
Categories based on logic:

• Fixed logic: Function fixed in
hardware, performs a single task

• Selectable logic: Choose one of
several fixed functions.

• Parametrizable logic: Accepts a set
of parameters that control the
computation of fixed functions.

• Programmable logic: list of
instructions provided at runtime (you
can code them)

Categories based on Complexity:

• Co-processors: Dedicated function.
Usually performs a single task at high
speed. Used in -> Floating point
accelerator. Fixed/Selectable logic.

• Microcontrollers: Direct hardware
control. Used in -> Elevator doors.
Programmable logic.

• Embedded System Processors:
real-time OS, dedicated hardware.
usually more powerful than
microcontrollers. Used in -> smart
phone Programmable logic.

• General-purpose Processors:
compatible for multiple systems. Used
in -> CPU in a PC. Programmable
logic.

Parts of a processor
• Controller: Responsible for program

execution. Steps through the program
and coordinates the actions of all
other units.

• Arithmetic logic unit: Performs all
computational tasks. Performs one
operation at a time according to
controller.

• Local storage (registers): Hold data
values such as operands for arithmetic
operations and the result.

• Internal connections: Transfers data
values between units, like from local
storage to the ALU. AKA data
paths/Bus/Control lines

• External interface: Handles all
communication between the processor
and the rest of the computer system.

Fetch execute cycle

There is a instruction pointer which
moves through the program performing
every step. The cycle never ends while
the system is running.

1. Fetch the next instruction
2. Decode the instruction and fetch

operands from registers
3. Perform the arithmetic operation

specified by the opcode
4. Perform memory read or write, if

needed
5. Store the result back to the registers
6. go to next instruction, Repeat forever.

Program Translation

• Preprocessor: Expands macros,
producing modified source program.

• Compiler: Translates it to assembly.
• Assembler: Translates it to

relocatable object code which contains
references to external library
functions.

• Linker: Replaces external function
references with its code.

CISC vs RISC
CISC
• Each instruction performs a complex

operation
• Instructions may take multiple clock

cycles
• Fewer instruction calls
RISC
• Each instruction performs a simple

operation
• Instructions all take the same number

of clock cycles
• Many instruction calls needed
• Allows for pipelining, as each part of

the instruction takes the same amount
of time

Pipelines
Allow for more than one instruction to
be “processed” at the same time.
Generally 5 stages:
1. Fetch next instruction
2. decode & fetch operands
3. perform arithmetic operation
4. read or write memory
5. store result

Pipeline Stalls

Also known as hazards. 3 main types:
• Data Hazards: Waiting for data from

an earlier instruction. Can be dealt
with using data forwarding (allowing
data to be used before it exits the
pipeline), re-arranging instruction
order.

• Control Hazards: Incorrect
instruction is in the pipeline. Occurs
during jump instructions/branching.
Jumps are not executed until the fifth
stage, so instructions directly after are
fetched inside the pipeline. Can be
dealt with using conditional branch
prediction, flushing pipeline if
prediction is wrong.

• Structural Hazards: Resource
conflict (usually from external source)
(eg somebody else is accessing the
same register bank). Can be dealt
with by loading data in parallel, eg
using multiple banks.

Branching
Moving the instruction pointer to a
different location in program. Can be
either absolute branch, or relative
branch. Branch prediction can be used to
try to run code from a branch before the
processor has the data needed to
evaluate it, speeding up runtime.

Instruction Sets
Generally has the following parts:
Operation number, registers, offset.
• Opcode (operation code): Specifies

the operation to be performed.
• Registers: Specifies the operands and

the destination.
• Offset: Think of it like array indexes.

Can be a signed integer to move
backwords.

Design choices
Encoding length

Variable-length encoding can improve
instruction density, but fixed-length
instructions are simpler to implement in
hardware, and are thus more performant.
Unused bits are ignored by the
instruction.
Offsets are used to encode immediate
values (generally used for jumping).

Number of Operands

• Zero operands: Stack architecture,
using push and pop. All operands are
implicit.

• One operand: Implicit destination
(usually a special accumulator
register)

• Two operands: Specified destination,
but uniary operations (eg
add rA, rB #rA=rA+rB)

• Three operands: Specified
destination, binary operations

TL;DR, more operands = more flexible
instructions, but more space taken up by
operands

Implicit vs Explicit Encoding

• Implicit Encoding: Operand types
are always the same for a given
opcode. Different opcodes are used for
different types.

• Explicit Encoding: Operand field
specifies what type of operands are
being provided.

Operand Adressing Modes

Subroutines and Register Windows

When calling a subroutine, a window
viewing the registers will shift between
addresses, making some registers of them
inaccessible, some new registers
available, and keeping some between
both calls. This allows for values to be
passed to and from the subroutine, while
keeping some values separated.

Register Banks

• Allows parallel access within same
clock cycle → efficiency

• Some operations require operands
from banks

• Register bank conflicts

Register Conflicts

Accessing 2 registers from the same bank
simultaneously causes a register conflict.
Best case, it causes a stall in the
pipeline. Worst case, it causes the
system to crash.

Solution

• reassign
• moving registers
• insert an instruction to copy values to

the opposite register.

Physical Implementation

• Core loop between M1, 32-bit pgm.
ctr., 32-bit adder

• Instruction memory returns
instruction at given address

• Instruction decoder takes instruction
and decodes it into individual parts

• Register fields used to select registers
used in instructions, register unit
takes fields and returns contents

• M2 Multiplexer takes auxiliary adding
functions (such as adding an offset)
and passes it through ALU

• ALU performs operation. For
addresses, it’s passed directly to data
memory to get data out, for
operations, data is passed to
multiplexer to be stored into register
for future use.

Bit Representations

Microcode
Allows for simpler hardware design by
offloading complexity to software. Macro
instructions are made of microcode. Have
a different instruction set available
internally. Microcontrollers(s) sprocess
microcode to emulate macrocode.

Pros
Less prone to errors compared to
hardware design. Easier to implement.
Ease of extension and modification.
Offers another level of abstraction.

Cons
More overhead than dedicated hardware
design. Variable cost for macro
instructions, depends on number of micro
instructions in its implementation.
Microcontroller needs to run very fast.

Vertical Microcode
Microcontroller is a centralized unit
sequentially excuting code; controls a
single functional unit at a time. It must
be fast. Think of a macrocode
instruction as a function composed of
micro instructions run one at a time.

Horizontal Microcode
Control multiple functional units
simultaneously. Each instruction
executes several operations in parallel.
Allows greater use of parallelism and the
Microcontroller does not need to run at
as high a clock rate. Allows simultaneous
control of multiple units in the CPU.

Memory & Caching
Memory designed to be hierarchical, with
data copied into faster access levels as
needed (acting as caching layers):
ALU → Registers → Memory → Storage.

RAM Types
SRAM: Similar to a latch, high power
consumption, low latency, high access
speed.
DRAM: Similar to a capacitor, low
power consumption, higher latency,
slower access. As time passes the charge
dissipates and becomes 0. Requires a
refresh circuit.

Measure of Mem performance
• Density number of memory cells per

square area of silicon. Memory density
tends to double approximately every
eighteen months. (Moore’s Law)

• Read and write performance.
• Latency Time taken to do one

operation. A memory system may
need extra time between operations,
latency alone is insufficient.

• The read cycle time and write cycle
time are used as measures of memory
system performance because they
assess how quickly the memory system
can handle a sequence of requests.

Memory bus: interface width / word size
/ number of lines

Memory Addressing
Memory is word addressable (r/w ops
apply to words), but virtual addresses at
processor level are byte addresses.
Let b be the byte-address, and N be the
number of bytes in a word. Then

• word address w = ⌊ b
N

⌋
• offset = b mod N
We use N as powers of 2, to make
arithmetic easier (division by 2x is the
same as right shiting by x bits, Modulo
equivalent to truncation at x digits).

Byte Alignment
If a piece of data is stored in a single
word, then it is said to be byte aligned.
Good for performance.

Memory Address Space
Address size is the same as word size.
address space is the set of possible
addresses (An n-bit addressable system

will have 2n different memory addresses).
If we use byte addressing instead of word
addressing, we have a factor of N less
memory (N = size of a word).

Calculating alloc. of bits in address

W : words per line, B : blocks/lines in
cache, A : bits in architecture.
|off| = log2 W, |blockId| =
log2 B, |tag| = A − |off| − |blockId|

Memory Management Unit
Interface that multiple memory chips can
connect to, providing a common address
space to processor. Implements virtual
memory, caching. Combining address
spaces generally done either sequentially
or interleaved (generally #2).
Interleaving done by selecting the least

significant bits, assuming 2N different
chips to distribute over.

Caching
The same data is frequently read /
written to. It can also reduce the impact
of the Von Neumann bottleneck. L1
cache: associated with one particular
core. L2 cache: on-chip cache that may
be shared. L3 cache: on-chip cache that
is shared by multiple cores.
Characteristics: Small - size of cache ≪
size of data at producer. Active -
contains algorithm that decides data to
store and handles requests. Transparent -
producer and consumer unaware of
cache’s existence. Automatic -
self-contained.

Hit ratio: r =
Nhit

Nhit+Nmiss
Cache look up cost:
Ccache = rCh + (1 − r)Cm
Cache always improves performance
when Cm > Ch and r > 0.

With two caches, Ccache =

r1Ch1 + r2Ch2 + (1 − r1 − r2)Cm

Replacement Policies
Least Recently Used, Least Frequently
Used

Cache Maintenance Policies
Write Through - As soon as value is
modified, update all caches.
Write Back - Set a flag when modified
(dirty bit), only write back when value in
cache is evicted.

Cache Coherence Protocols
Multiple processors changing the same
value means a cache coherence protocol
is needed. All caches need to see write
ops in same order, and need to be
informed immediately when a value is
changed. Some cases may lead to cache
being flushed. Strategies: common
directory, snooping

Direct Mapped Memory Cache
Several cache lines (blocks) containing
words from memories. Broken up into
Tags and Blocks (both in powers of 2).

• Offset: o = a mod W , where o is the
offset, a is the address, and W is the
number of words per line. (if W = 2x

then x lowest order bits in bin)
• Block ID: b = (a div W) mod B,

where B is the number of blocks/lines

in the cache.(if B = 2x then x lowest
order bits in bin excluding o)

• Tag: t = (a div W) div B (everything
else)

Total mem needed to implement cache
(bytes) = no.of lines × no. of words per
line × no.of bytes per word

Self Associative Memory Cache
Maintains multiple underlying caches,
searches all of them simultaneously
through parallelism. For a single DMMC,
addresses which collide in a slot will lead
to constant cache misses, but with set
associative we can reduce the chance of
this happening. Full parallelism =
Content Addressable Memory (CAM).

Virtual Memory
Addresses sent b/t CPU and MMU are in
virtual address space, MMU talks to
physical memory in physical address
space. Keeps mapping between virtual
space i and a pair, (base, bound). base
points to mem address mapping to
vaddress 0, bound can be scaled
dynamically and points to end of memory
space. We split memory space into
variable sized chunks to allow us to ”use”
more memory than is available, as most
memory is idle.

Demand Paging
Split program memory up into fixed size
chunks called pages. Similar to
segmentation, more straightforward to
implement. Requires cooperation b/t
software and hardware. Software:
Configure hardware - monitor page use -
move pages b/t memory and storage -
save pages to disk when they need to be
swapped out of the resident set
Hardware: Handle address mapping -
record when a page is used - detect
access attempt to a missing page

Process

1. MMU tries to load address a on page
P 2. MMU checks page table Pt[P].
Check if presence bit is set. 2.5. If not,
MMU raises page fault, OS handles fault
and loads P from hard drive, if no space
left OS swaps out page with use bit of 0,
if modified bit is set, save page, otherise
discard. 3. If yes, MMU looks up address
and updates use bit and modified bit.
Page table holds pointers to frames,
allocates all pages for program’s memory
space. Also maintains flags: presence bit

(if page is resident), use bit (each time
address is fetched, clear if page is unused
for x cycles), modified bit (set if memory
address in page has been written to)
Accessing address a with each page being
V bytes long: Page number is
N = a div V . Frame address is
F = Pt[N]. Offset: O = a mod V .
Physical address of a is F + O.

Translation Lookaside Buffer
Type of cache, we keep a record of
F = Pt[N] so if we look it up again we
can return the cached version. Parallel
lookup through TLB and request to
memory. Cache holds virtual addresses
with process ID: [ID][Virtual Address] =
[address used by cache]

IO Bus
A bus is a digital communication
mechanism that allows two or more
functional units to transfer control
signals or data. Interconnects functional
units (includes external devices). A bus
standard must specify all the details
needed to construct hardware. An access
protocol must be defined to permit the
sharing of a bus b/w parts. The access
protocol specifies how an attached device
can determine whether the bus is
available or is in use, and how attached
devices take turns using the bus.

Parallel vs Serial
Parallel: Multiple data lines, pretty
straight forward, multiply lines and
clockspeed to get throughput. Lower
latency per word, can send in one go.
Potentially higher throughput, but
possible issues with interference. Serial:
Single data line, clockspeed =
throughput in bits. Higher latency (word
sent sequentially), but possibly higher
rate of data transfer.

Communication Directionality
Single direction: data can only flow in
one direction, ever. Half duplex: one
direction at a time. Full duplex: both
directions at the same time.

Multiplexing
Take a bunch of bits to be transfered,
resize them into chunks, pass them into
mux hardware, demux at the other end
and reassemble.

Physical Implementation
Bus implemented from parallel wires
along edge of board (eg PCIe). Different
lines dedicated to different functions:
Control lines: Take control of bus,
request transfers, set signals and
interrupts. Address lines: Transmit the
address in a fetch/store operation. Data
lines: Transmit data.
Alternatively, multiplex using combined
address and data lines together. All
devices connected to bus see data,
address, control bits sent, only device
with matching address responds. Each
device on bus has a unique address, with
each address corresponding to particular
device function. Each socket has a range
pre-assigned.

Unified Address Space
IO devices are in same space as memory
addresses. Fetch/store to device is same
as fetch/store to memory. MMU manages
address alloc and raises faults when
accessing hole in address space.

Bridging
Architecture has one primary bus and
several aux busses. Bridges connect
busses, provide address translation,
relays data. Provides address translation
in unified address space, addresses on
main bus can be kept constant while
being mapped differently on aux bus.

Interrupts
Two options for IO operations: Option
1: Each device exposed as an address.
CPU performs fetch/store directly. Ops
triggered and monitored by CPU.
Programmed I/O
Option 2: Smart device carries out
operations independently. Device must
contain processor. CPU sets high-level
goals, local processor performs the actual
operations and monitors for results.
Interrupt-driven I/O

Programmed I/O
CPU takes control of all low-level
operations on device. Device can be very
simple, fixed logic circuits. Sync issues,
as CPU runs at a high clock race but
device operations are much slower.
Result: CPU has to wait for device.
Special registers on device used to
exchange information: Control and
Status Registers (CSRs). Control register
corresponds to set of addresses that
respond to a store operation. Values of
different status variables. Status register
corresponds to set of addresses that
respond to fetch operation. Repeated
polling is used to check for operation
status. Inefficient, not commonly used
today. The typical usecase for
programming in a low-level language is
programming instructions for a memory
controller.

Interrupt-driven I/O
Requires special design for I/O device
hardware (on-board processor and ability
send interrupts), I/O bus architecture
(interrupt signals), processor architecture
(context switching), programming
paradigm (OS supports interrupts). At
boot time, fill IV table by device. IDs
can either be by plug-in slot, or set by
BIOS. Hotplug devices trigger interrupts,
handler allocates device id and interrupt
handler for new device. Handling usually
done through device drivers.

Interrupt Vectors

Store a vector of interrupt response
pointers in memory, so we know how to
respond to each device’s interrupt.

Device Drivers

Upper Half: Provides OS interface to
user-space programs (syscalls)
Lower Half: Runs asynchronously,
invoked by interrupts Communication:
Via shared variables, buffers, and mutex
locks (paralellism :D)

Direct Memory Access
Instead of context switching to deal with
every byte of memory, give the device an
address to a buffer to write a block of
information. Put a few addresses in a
linked list to make it better.
Alternatively, also include a list of
instructions in that linked list.
High-volume devices can otherwise
overwhelm the CPU with interrupts. It
allows large amounts of data to be sent
to devices. It allows the CPU to chain
different operations. It allows devices to
access memory directly.

Buffering
Collect a bunch of calls together, send
them to I/O device together. Given a
single call takes M cycles for operations
and N cycles for overhead. Thus, K
separate calls costs K × (M + N), while
buffered costs (K × M) + N.

Possible Questions
Calculate bits for Tag ID
Assume a 16-bit architecture where the
cache can hold 8 blocks/lines of
memory, each which is 32 bytes long.
How many bits are needed to represent
the tag id?
• 16-bit architecture - 2 bytes per word

• 8 blocks - 23 blocks, so 3 bits for
block id

• 32 bytes per block - 32/2 = 16 = 24

words per block, so 4 bits for offset
(or 5 bits if byte addressable)

• 16 − 3 − 4 = 9 bits for the tag id.

Calculate Total GB of RAM
Installable
How many GB of RAM can you install on
a 32-bit word addressable system?
• 32 bit addressable means that one

word is 32 bits or 4 bytes
• program counter is the size of a word;

can point up to 232 word addresses.
• Each word address is of size 4 (or size

1 if byte addressable), thus using

232 × 4 = 234 bytes of total memory.

• 234/230 = 24 = 16 GB of memory.

	Logic Basics
	Transistors
	Logic Circuits
	Symbols (bottom have 2 inputs)
	Adders
	Latches & Flip-flops

	Counters
	Propagation Delay
	Decoders
	Feedback Loops
	Multiplexer / Demultiplexer
	Software vs Hardware Design
	Fixed & Programmable Logic

	Data Encoding
	Converting between bases
	Fraction to Binary
	Signed Integers
	Cast from Ints
	IEEE-754 Floats
	Special Values

	Binary-coded decimals
	Endianess
	Types of architecture
	Von Neumann Bottleneck

	Types of processors
	Parts of a processor
	Fetch execute cycle
	Program Translation
	CISC vs RISC
	Pipelines
	Pipeline Stalls

	Branching

	Instruction Sets
	Design choices
	Encoding length
	Number of Operands
	Implicit vs Explicit Encoding
	Operand Adressing Modes
	Subroutines and Register Windows
	Register Banks
	Register Conflicts
	Solution

	Physical Implementation
	Bit Representations
	Microcode
	Pros
	Cons
	Vertical Microcode
	Horizontal Microcode

	Memory & Caching
	RAM Types
	Measure of Mem performance
	Memory Addressing
	Byte Alignment
	Memory Address Space
	Calculating alloc. of bits in address

	Memory Management Unit
	Caching
	Replacement Policies
	Cache Maintenance Policies
	Cache Coherence Protocols
	Direct Mapped Memory Cache
	Self Associative Memory Cache

	Virtual Memory
	Demand Paging
	Process

	Translation Lookaside Buffer

	IO Bus
	Parallel vs Serial
	Communication Directionality
	Multiplexing
	Physical Implementation
	Unified Address Space
	Bridging

	Interrupts
	Programmed I/O
	Interrupt-driven I/O
	Interrupt Vectors

	Device Drivers
	Direct Memory Access
	Buffering

	Possible Questions
	Calculate bits for Tag ID
	Calculate Total GB of RAM Installable

