COMPSCI 2GA3 Cheatsheet v1.0.0 (OSCS Edition)

Logic Basics

Transistors input flip-flop output
MOSFETSs have 4 components: Source, Gate, Drain, and
Base
PNP/NMOS: Is on when gate is positive. No circle.
in 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0

NPN/PMOS: Is on when gate is negative. Has circle.
Generally, transistors are used to pull the output to either a
positive voltage, or a zero voltage (1 or 0, on or off). If
output is not pulled to one of these, the output is floating
and is indeterminate in voltage.

time increases
Gated D-latch

Source Source
D
current flows \ current flows Q
from § 1o D from S 10 D
Gate = hen G is Gate = henGis
positive negative
i Q
Drain Drain E
(a) (b)
E/C D ‘ Q Q Comment
Logic Circuits —
0 X Qprev Qprev No change
Symbols 1 0 0 1 Reset
1 1 1 0 Set
P q ‘ and nand or nor xor invert p
1 1 1 0 1 0 0 0 ® Q - The stored bit
1 0 0 1 1 0 1 0 e D - Data/bit to write to Q
0 1 0 1 1 0 1 1 e E - The enabler (Must be 1 to enable writing, otherwise
0 0 0 1 0 1 0 1 nothing changes)

e Operate on the principle of propagation delay.
e Stacking many of them can be used to create a register:

enable line for the register ———s— ‘ Register

nand gate nor gate inverter (1-bit N
latch
1-bit
input bits for) ‘T_‘ﬂl output bits for
and gate or gate Xor gate the register Mo | the register

latch

1-bit
\—l latch

Adders

Left: Half-adder. Right: Full-adder.

bit 1
i sum

Counters
For each transition from low to high, the counter
increments the binary output by 1. (Counting the transition
from high to low does the same thing, but the lecture used
rising-edge counters).
Propagation Delay
The rate at which a transistor switches. Typical 100 ps
(picoseconds)

sum Decoders
Take in an m-bit number, and turn on one of 2™ outputs.

Feedback Loops

carry in

carry out decoder

these two gates petform |— not used

clock the Boolean and function counter [— test battery
S |— test memory
— start disk

(— power on display

(— read boot block
{— start CPU

Jeedback _‘ stop
\
\
\

e Counter increments each time the clock changes from 0 to
1

e Decoder moves to the next instruction each time
Stop sends a signal back to the and gate which stops
counter

Unlike half-adders, full-adders can recieve carry-in bits. To
add more bits, chain multiple full-adders together. If final
carry at end is 1, there’s an overflow error.

Multiplexer / Demultiplexer

Multiplexer turns n signals into a single signal. Chooses
which signal to let through. Demultiplexer turns a single
signal into n signals. The single signal chooses which signal
to output.

Latches & Flip-flops

Flip-flop Every time the input switches from 0 to 1, the
output switches to the opposite.

Software vs Hardware Design

Unlike software, which uses iteration, hardware uses
replication. The advantages of replication are increased
elegance, higher speed, and increased reliability. Hardware
also uses gate minimization, abstraction and power
optimization.

Fixed & Programmable Logic

Fixed logic circuits: Pre-determined function.
Programmable logic: FPGAs (reprogrammable, but still a
significant cost to switching functions). Stored program
and re-programmable circuits: Your computer right now.

Data Encoding
1 Byte = 8 bits. 1 Byte encodes a character, integer, or
pointer. 1 Word is n bytes, determined by the architecture.

Converting between bases

Base 10 to Base N Divide decimal # by # of new base.
Take remainder as rightmost digit. Divide quotient of
previous divide by new base. Repeat until quotient is zero.
Base N to Base 10 Take each column position of each
digit, zero indexed, as n. For each column, do c - b™, where
c is the value of the column, and b is the base value in base
10.

Important bases table

Hex Bin Dec Hex Bin Dec
0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 A 1010 10
3 0011 3 B 1011 11
4 0100 4 (¢} 1100 12
5 0101 5 D 1101 13
6 0110 6 E 1110 14
7 0111 7 F 1111 15

Fraction to Binary

Let = be the decimal part of our fraction.

Let b be our binary output.

Multiply = by 2.

If > 1, subtract 1 from = and append 1 to b.
If © < 1, append O to b.

Goto step 3 until ! = 0.

SOk W

Signed Integers

e Two’s complement: Flip all bits, add 1. Range is
—@" . 4@ -

e Sign-magnitude: First bit is sign, rest is magnitude.
Range is — (2"~ 1 — 1), (2"~ — 1),

e One’s complement: Flip all bits. Eg, +6 is 0110, so to
get -6 go from 0110 — 1001 — 1010. This has 2 zero,
positive and negative zero. Range is
—2n—1 1y penl — .

Cast from Ints

You might want to cast a lets say 8 bit int, to a 16 bit int.
How you do that?

sign-magnitude: Copy the MSB to the bigger ints MSB.
Then take the remaining bits and fill them from the right to
left.

one’s complement and two’s complement: Copy the
Lowest order bits (the bits except the sign defining bit) and
copy them to the other ints lowest order bits.

Take the MSB and make all the remaining bits in the new
int the MSB.

IEEE-754 Floats

Can represent values from 27126 to 2127 which is 10738 to
1038 in decimal. If double precision is used then the range
is 271022 ¢4 21023 yhich is 107308 o 10308 in decimal.

Separated into sign, exponent, and mantissa. Entire float
is represented in binary, and the exponent is biased by

2b=1 _ 1 where b is the number of exponent bits. Leading
1 is dropped from mantissa. To calculate from IEEE, do
1.(mg) X 2(e2) (Convert out of base 2 first). Range is
b b
approximately 2(=2°)+2 22” =1 (here b is the bits
dedicated to the exponent, minus 1.
3130 23 22 0

s| exponem[mantissa (bits 0 - 22)
(@)

6362 52 51 0

s| exponent ‘ mantissa (bits 0 - 51)

(b)

Special Values

Exponent Mantissa ‘ Value
all 1s all Os +oo
all 1s not all Os NaN
all Os not all Os denormalized
all Os all Os +0

Binary-coded decimals

Instead of representing decimals using a float, use an
arbitrarily long string of bytes, usually as binary ints.
Efficiency can be improved using packed BCDs, by putting 2
ints in one byte (each digit occupying a nibble). 0x2D is used
by the textbook to represent a negative, placed at the end
of the BCD. For a packed BCD, drop the 2.

Endianess

Endian: The way in which words(group of bytes) are stored
in memory. Big Endian: Most significant byte first. Little
Endian: Least significant byte first. Little endian is the
most common method of storing data in memory.

00011101 10100010 00111011 01100111
(a) Integer 497,171,303 in binary positional representation

loc. i loc. i+l loc. i+2 loc.i+3

B 01100111 ‘ 00111011 | 10100010 | 00011101

(b) The integer stored in little endian order

loc.i+3
01100111

loc. i+2
00111011

loc. i loc. i+l
e 00011101 ‘ 10100010

(c) The integer stored in big endian order

ASCII and Unicode

ASCII: 128 characters, 7 bits. Unicode: 1,114,112
characters, 21 bits. Has variable length encoding for
optimization i.e has as many bytes as needed.

Unicode Encoding
é _ Code poit

U+00EQ -> (11010016

1 2 3 9 5 6
[melfoalf [A[wicoi]

Byte t Byte 2

1 Indicates this uncode character il use 3 bytes

2 ; Indicate code point bits start next

3+ packling bits 2

4+6 : Code point bits

5+ Indicates this byle s a continuation of previous one

Types of architecture
Von Neumann architecture (left):

e Single memory block which contains both instructions
and data.

e Offers complete flexibility: at any time, owner can change
how much of the memory is devoted to programs and how
much to data.

e More popular.

Harvard architecture (right):

e 2 separate memory. One is used for instruction, one is
used for data.

e Inflexible, as you cannot use part of the instructional
memory to store data and vise versa.

® Less popular. Sometimes used in small embedded systems.

computer computer

instruction
memory
data
memory

processor memory processor

input/output facilities input/output facilities

Von Neumann Bottleneck

On computers running Von Neumann Architecture, time
spent accessing memory can limit performance. To avoid the
bottleneck, designs are chosen where operands are moved to
registers instead of system memory.

Types of processors

A processor is a digital device that can perform a
computation involving multiple steps.
Categories based on logic:

e Fixed logic: Function fixed in hardware, performs a
single task

o Selectable logic: Choose one of several fixed functions.

o Parametrizable logic: Accepts a set of parameters that
control the computation of fixed functions.

o Programmable logic: list of instructions provided at
runtime (you can code them)

Categories based on Complexity:

o Co-processors: Dedicated function. Usually performs a
single task at high speed. Used in -> Floating point
accelerator. Fixed/Selectable logic.

e Microcontrollers: Direct hardware control. Used in ->
Elevator doors. Programmable logic.

e Embedded System Processors: real-time OS, dedicated
hardware. usually more powerful than microcontrollers.
Used in -> smart phone Programmable logic.

o General-purpose Processors: compatible for multiple
systems. Used in -> CPU in a PC. Programmable logic.

Parts of a processor

e Controller: Responsible for program execution. Steps
through the program and coordinates the actions of all
other units.

e Arithmetic logic unit: Performs all computational
tasks. Performs one operation at a time according to
controller.

e Local storage (registers): Hold data values such as
operands for arithmetic operations and the result.

o Internal connections: Transfers data values between
units, like from local storage to the ALU. AKA data
paths/Bus/Control lines

e External interface: Handles all communication between
the processor and the rest of the computer system.

Fetch execute cycle

There is a instruction pointer which moves through the
program performing every step. The cycle never ends while
the system is runing.

-

Fetch the next instruction

2. Decode the instruction and fetch operands from registers
3. Perform the arithmetic operation specified by the
opcode

Perform memory read or write, if needed

Store the result back to the registers

go to next instruction, Repeat forever.

oo

Program Translation

preprocessed
source e X assembly
code ~—| Preprocessor |—#= —=| compiler |—="" 4o
code
relocatable binary
assembler |—#= object —e= linker —» object
code code

t

object code
(functions)
in libraries

e Preprocessor: Expands macros, producing modified
source program.

e Compiler: Translates it to assembly.

e Assembler: Translates it to relocatable object code
which contains references to external library functions.

e Linker: Replaces external function references with its
code.

Fetch execute cycle notes

o Instructions are stored as binary data defined in a
instruction set.

e The program starts at a constant point in memory which
could be 0 or any other point, that part of memory
should always have the necessary instructions to boot the
system.

e Fetch execute cycle runs indefinitely, that’s why in
general purpose computers an OS is running at all times
that manages the execution of programs.

CISC vs RISC
cisc

e Bach instruction performs a complex operation
e Instructions may take multiple clock cycles
e Fewer instruction calls

RISC

Each instruction performs a simple operation
Instructions all take the same number of clock cycles
Many instruction calls needed

Allows for pipelining, as each part of the instruction
takes the same amount of time

Pipelines
Allow for more than one instruction to be “processed” at
the same time. Generally 5 stages:

Fetch next instruction
decode & fetch operands
perform arithmetic operation
read or write memory

store result

CUs W

Pipeline Stalls

Also known as hazards. 3 main types:

e Data Hazards: Waiting for data from an earlier
instruction. Can be dealt with using data forwarding
(allowing data to be used before it exits the pipeline),
re-arranging instruction order.

e Control Hazards: Incorrect instruction is in the
pipeline. Occurs during jump instructions/branching.
Jumps are not executed until the fifth stage, so
instructions directly after are fetched inside the pipeline.
Can be dealt with using conditional branch prediction,
flushing pipeline if prediction is wrong.

e Structural Hazards: Resource conflict (usually from
external source) (eg sombody else is accessing the same
register bank). Can be dealt with by loading data in
parallel, eg using multiple banks.

stage 1 stage 2 stage 3 stage 4 stage 5
h fetch ALU access write
clock instruction operands operation memory results
1 inst. K inst. K-1 inst. K-2 inst. K-3 inst. K-4
Time 2 inst. K+1 inst. K inst. K-1 inst. K-2 inst. K-3
3 inst. K+2 (inst. K+1) inst. K inst. K-1 inst. K-2
4 (inst. K+2) (inst. K+1) - inst. K inst. K-1
5 (inst. K+2) (inst. K+1) - - inst. K
6 (inst. K+2) inst. K+1 - - -
7 inst. K+3 inst. K+2 inst. K+1 - -
8 inst. K+4 inst. K+3 inst. K+2 inst. K+1 -
9 inst. K+5 inst. K+4 inst. K+3 inst. K+2 inst. K+1
10 inst. K+6 inst. K+5 inst. K+4 inst. K+1 inst. K+2
Figure 5.5 Illustration of a pipeline stall. Instruction K+1 cannot proceed
until an operand from instruction K becomes available.
Branching

Moving the instruction pointer to a different location in
program. Can be either absolute branch, or relative branch.
Branch prediction can be used to try to run code from a
branch before the processor has the data needed to evaluate
it, speeding up runtime.

Instruction Sets

Generally has the following parts: Operation number,
registers, offset.

e Opcode (operation code): Specifies the operation to be
performed.

e Registers: Specifies the operands and the destination.

e Offset: Think of it like array indexes. Can be a signed
integer to move backwords.

Design choices
Encoding length

Variable-length encoding can improve instruction density,
but fixed-length instructions are simpler to implement in
hardware, and are thus more performant. Unused bits are
ignored by the instruction.

Offsets are used to encode immediate values (generally used
for jumping).

Number of Operands

Zero operands: Stack architecture, using push and pop.
All operands are implicit. One operand: Implicit
destination (usually a special accumulator register) Two
operands: Specified destination, but uniary operations (eg
add rA, rB #rA=rA+rB) Three operands: Specified destination,
binary operations TL;DR, more operands = more flexible
instructions, but more space taken up by operands

Implicit vs Explicit Encoding

Implicit Encoding: Operand types are always the same for
a given opcode. Different opcodes are used for different
types. Explicit Encoding: Operand field specifies what
type of operands are being provided.

Operand Adressing Modes

cpu memory

locations in memory

instruction register

@ ® o

—rr ™

1 Immediate value (in the instruction)
2 Direct register reference

3 Direct memory reference

4 Indirect through a register

5 Indirect memary reference

Orthogonality

Each instruction should perform a unique task, without
duplicating or overlapping the functionality of other
instructions. Advantages: Orthogonal instructions can be
understood more easily, and programmers don’t need to pick
between functions that perform the same task.

Registers

e General Registers: Fixed size (usually 32 or 64 bits), 2
basic ops, fetch and store. Numbered from 0 to N — 1.

e Floating Point Registers: Separate set of registers
holding floats, but numbering overlaps. Floating point
registers are automatically used if instruction requires FP.

e Special Registers:

— Program Counter (pc) - Stores the address of the
next instruction to fetch.

— Comparer (cmp) - Stores the result of the last
comparison operation. (1 for true, 0 for false).

— Accumulator (acc) - For zero and one-operand
architectures to store the result of the last command.

Subroutines and Register Windows

When calling a subroutine, registers in use will partially
shift down, making some of them unaccessible, some new
registers available, and keeping some between both calls.
This allows for values to be passed to and from the
subroutine, while keeping some values separated.

other registers

registers 0 - 7 before
are unavailable

subroutine is called

operation reg A regB dstreg unused | | ‘ ‘ }
X | X | % | X
add [070 00 1] [[I | t
" (a)
operation reg A unused _dsi reg offset
toad [070"0 1 o] registers 0 -7
unavailable when subrautine runs unavailable
operation regA regB unused offset
store 0,001 1] \ | \ \
©[e[xalefefo[n []ulu] []]]
operation reg A unused unused offset

jump 070710 0] [[] |

Register Banks

e Allows parallel access within same clock cycle ->
efficiency

e Some operations require operands from banks

e Register bank conflicts

Register Conflicts

Accessing 2 registers from the same bank simultaneously

causes a register conflict. Best case, it causes a stall in the

pipeline. Worst case, it causes the system to crash.

Solution

® reassign

e moving registers

e insert an instruction to copy values to the opposite
register.

Physical Implementation

M M3
Tl Mr—
™ (g
register
data in
instr. decoder data
ALU memory
regA B addr.
reg B n
|eg8
data
dstreg out
data
in
offset
operation

Figure 69 Hlustration of data paths including data memory.

[Instruction M1 [M2 [M3]
add rX,rA,rB 0 1 0
load rX,off(rA) | 0 0 1
store rb,off(rA) | 0 0 X
jump off(rA) 1 0|0

e Core loop between M1, 32-bit pgm. ctr., 32-bit adder
Instruction memory returns instruction at given address

e Instruction decoder takes instruction and decodes it into
individual parts

o Register fields used to select registers used in
instructions, register unit takes fields and returns
contents

e M2 Multiplexer takes auxiliary adding functions (such as
adding an offset) and passes it through ALU

e ALU performs operation. For addresses, it’s passed
directly to data memory to get data out, for operations,
data is passed to multiplexer to be stored into register for
future use.

Unsigned Sign One’s Two's
Binary (positional) Magnituds
String Interpretation _Interpretation P
o000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 4 4 4 4
0101 5 5 5 5
0110 6 6 6 6
0111 7 7 7 7
1000 8 -0 -7 -8
1001 9 -1 -6 -7
1010 10 -2 -5 -6
1011 1" -3 -4 -5
1100 12 -4 -3 -4
1101 13 -5 -2 -3
1110 14 -6 -1 -2
1111 15 -7 -0 -1

Figure 3.9 The decimal vae assigned to each combination of four bits when using unsigned, sign-magnitude, o0e’s
complement, and two's complement interpretations

	Logic Basics
	Transistors
	Logic Circuits
	Symbols
	Adders
	Latches & Flip-flops

	Counters
	Propagation Delay
	Decoders
	Feedback Loops
	Multiplexer / Demultiplexer
	Software vs Hardware Design
	Fixed & Programmable Logic

	Data Encoding
	Converting between bases
	Fraction to Binary
	Signed Integers
	Cast from Ints
	IEEE-754 Floats
	Special Values

	Binary-coded decimals
	Endianess
	ASCII and Unicode
	Unicode Encoding
	Types of architecture
	Von Neumann Bottleneck

	Types of processors
	Parts of a processor
	Fetch execute cycle
	Program Translation
	Fetch execute cycle notes
	CISC vs RISC
	Pipelines
	Pipeline Stalls

	Branching

	Instruction Sets
	Design choices
	Encoding length
	Number of Operands
	Implicit vs Explicit Encoding
	Operand Adressing Modes
	Orthogonality

	Registers
	Subroutines and Register Windows
	Register Banks
	Register Conflicts
	Solution

	Physical Implementation

