Theorems

Negation, inequivalence, and false

(3.11) -p=gq
(3.14) (p#Zaq
(3.15) (-p =
(3.18) Mutual Associativity (p 2
(3.19) Mutual interchangeability  p #Z q
Disjunction
(3.27) Axiom, Distributivity of V over = pV(@=r)=pVg=pVr
(3.28) Axiom, Excluded Middle pV —p
(3.31) Distributivity of V over V pV(gVvr)=((pVae V(pVvr)
(3.32) PVag=pV qg=p
Conjunction
(3.35) Axiom, Golden rule pAG=p=q=p
(3.41) Distributivity of A over A pA(gAT) = (pA
(3.43)  Absorption (&) pA(PV q) =
(b)Y pV (pAaq)
(3.44) Absorption (a) pA(—mpVq)
(b)y pV(=pAq) =pVyg
(3.47) De Morgan (a) ~(p A q) —p V —q)
(b) ~(pVaq) = -pA—q)
(3.48) PAG=pA—qg=-p
(3.49) p A (g TY=PpAgGQ=EpPAT=p
(3.50) PA(@=p)=pAg
(3.51)  Replacement p=agA(r=p) = (P=q)V (r=q)
(3.52) Definition of = p=gq=(
(3.53) Exclusive or p # (
(3.55) (p A
= ”
Implication
(3.57) Axiom, Def of = P
(3.59) P
(3.60) P
(3.61)  Contrapositive P
(3.62) P
(3.63) Distr. of = over = P
(3.64) P
(3.65) Shunting P
(3.66) P
(3.67) P
(3.68) P
(3.69) P
(3.70) p
(3.71)  Reflexivity of = P
(3.72) Right zero of = P
(3.73) Left identity of = true = p = p
(3.74) p = false = —p
(3.75) false = p = true
(3.76) Weakening/strengthening (a) p=>pVagqg
(b) pAg=p
(c)pAhg=pVg
() pVv(agnr)=pVg
(e)pAa=pA(aVvr)
(3.77) Modus ponens PA(P=4q) = q
(3.78) (p=r)A(q@g=7) = (pVqg=>r)
(3.79) (p=r)AN(-p=>r)
(3.80) Mutual implication (p=a)A(a=p) =(p=q)
(3.81) Antisymmetry (p=a)A(qg=p)= (p=q)
(3.82) Transitivity (@) (p=g)A(g=r1r)=(p=>r1)
(b) (p=a)A (g =r1)= (p=T)
(p=aArl@=r)=(p=r1)

General Laws of Quantification

For symmetric and associative binary operator x with identity wu.

(8.
(8.

13)
14)

.15)
.16)
17)
.18)

.19)

.20)
.21)
.22)

.23)

Axiom, Empty range: (xz|false: P) = u

Axiom, One-point rule: Provided —occurs(‘z’, ‘E’),

(+z|z = E : P) = Plz := E]

Axiom, Distributivity: Provided each quantification is defined,

(*z|R: P) x (»z|R: Q) = (»z|R: P * Q)
Axiom, Range split: Provided RA S = false and each quantification
is defined, (xz|RV S : P) = (xz|RA S : P) = (xz|R: P) » (xX|S : P)
Axiom, Range split: Provided each quantification is defined,

(xxz|RV S : P)x (xzx| RAS: P) = (xz|R: P) « (>z|S : P)
Axiom, Range split for idempotent *x: Prov. each quant.
(x»xz|RV S : P) = (xz|R: P) x (xz|S : P)

Axiom, Interchange of dummies: Provided each quantification is
defined, —occurs(‘y’, ‘R’), and —occurs(‘z’, ‘Q’),

(xR : (xy|Q: P)) = (xy|Q : (xx|R : P))

Axiom, Nesting: Provided —occurs(‘y’, ‘R’),

(xx,yI[RAQ: P) = (xz|R : (xy|Q : P))

Axiom, Dummy renaming: Provided —occurs(‘y’, ‘R, P’),
(xe|R: P) = (xy|Rle i= y] : Ple i=y])

Change of dummy: Provided —occurs(‘y’, ‘R, P’), and f has an
inverse, (xz|R : P) = (xy|R[z := f.y] : Plz := f.y])
Split off term: (xi|[0 < i< n+4+1:P)=(xi0<i<mn:

is defined,

P) » P}

Theorems of the Predicate Calculus

Universal quantification

(9.2)
(9.3)

(9.4)

(9.5)

(9.6)
(9.7)
(9.8)
(9.9)
(9.10)
(9.11)
(9.12)

(9.13)
(9.16)

Axiom, Trading:
Trading:

Trading:

Axiom,
Distributivity of Vv
over V:

Distributivity of A
over V:

Range weaken-
ing/strengthening:
Body weaken-
ing/strengthening:
Monotonicity of V:

Instantiation:

(Vz|R: P) = (Vz\

R = P)

(a) (Vz|R : P)
(b) (Va|R : P)
(c) (Vz|R : P)

(a) (Ve|Q A R :
(b) (Vz|Q A R :
(c) (Vz|Q A R :
(&) (Vz|Q AR :
Prov. —occurs(‘z

)
L Py,
PV (Va|R:Q) = (Va|R: PV Q)

Provided —occurs(‘a’, ‘P’),

(Vz|R: P) = PV (Vx| :

Provided —occurs(‘a’ ‘P) —(Vz| : =R) =
(Va|R:PAQ) =P A (Ya|R : Q)

(Vo |R : true) = true

(Ve|R: P = Q) = ((Vz|R : P) = (V&|R : Q))

(Vz|Q V R : P) = (Vz|Q : P)
(Vz|R: P AQ) = (Vz|R : P)

(Vz|R: Q = P) = ((Va|R: Q) = (Vz|R :
P

(Vz| : P) = Plo = e]

P is a theorem iff (Vx| : P) is a theorem.

Existential quantification

(9.17)

(9.18)

(9.19)
(9.20)
(9.21)

(9.22)
(9.23)

(9.24)
(9.25)

(9.26)
(9.27)
(9.28)
(9.29)

(9.30)

Conditional Statements

Axiom,
Generalized De
Morgan:
Generalized De
Morgan:

Trading:
Trading:
Distributivity of
A over 3:

Distributivity of
V over 3:

Range weaken-
ing/strengthening:
Body weaken-
ing/strengthening:
Monotonicity of
3:

3-Introduction:
Interchange of
quantifications:

(3z|R: P) = ~(Vz|R : = P)

(a) =(3z|R: =P) = (Vz|R : P)
(b) =(3z|R : P) (Vz|R : = P)
(¢) (3z|R : =P) = =~ (Vz|R : P)
(3z|R: P) = (3z| : RA P)

(3|IQ AR: P) = (3z|Q : RAP)
Provided —occurs(‘z’, ‘P’),
PA(3z|R:Q) = (3z|R: PAQ)
(3z|R : false)

Provided —occurs(‘z’, ‘P’),
(=z|: R) = ( z|R: PVQ) =PV (3z|R: Q))
(3z|R : false) = false

(32|R: P) = (32|QV R : P)

(3z|R: P) = (3z|R: PV Q)

(Vz|R: Q = P) = ((3z|R: Q) = (3z|R: P))
Plz := B] = (3z|: P

)
Provided —occurs(‘y’, ‘R’) and
—occurs(‘z’, ‘Q’),
(BalR: (VulQ: P) = (vylQ -
Provided —occurs(‘@’, *
(3z|R: P) = Q is a theorem iff (RA P)lxz :=

&] = Q is a theorem

(3z|R : P))

(10.5) Proof method for IF: To prove {Q}IF{R}, prove {Q A B}S1{R}
and {Q A ~B}S2{R}

Find precondition

Given {?}S{R}. To find ? textual sub S into R

Set Theory
(11.3) Axiom, Set membership: Provided
—occurs(‘x’, ‘F’), F €
z|R: E= 3z | R: F =E)
(11.4) Axiom, Extensionality: S=T=WNz|:ze€S=xc¢€
T)
(11.5) S={z|z€S:a}
(11.6) Provided —occurs(‘y’, ‘R’) and {z| R:E} ={y| (3= | R:
—occurs(‘y’, ‘E’), y = E)}
(11.7) ze{x| R} =R
(11.9) {21 Q} ={= | R} = (Vo |
Q=R
(11.12) Axiom, Size: #S = ( S
(11.13) Axiom, Subset: scT €
(11.14) Axiom, Proper subset: scT A
(11.17) Axiom, Complement: v E~S A
(11.18) vE~S
(11.19) ~~ S =
(11.20)  Axiom, Union: vesu
(11.21)  Axiom, Intersection: vesn
(11.22)  Axiom, Difference: veS—
(11.23)  Axiom, Power set: vePs
(11.24) Definition. For Eg, a set 0 — fa
expression, Ep, a predicate v,N —
expression can be calculated:
(11.25) Metatheorem. For any set Es = Fs < Ep = Fp, Eg C
expressions Eg and Fg Fs < Ep = Fp,Es = U &

true

@
=

Properties of U

(11.26) Symmetry of U: SuUT =
(11.27) Associativity of U: (SuT)
(11.28) Idempotency of U: SuUS =
(11.29)  Zero of U: SUU=
(11.30) Identity of U: SuUp =
(11.31)  Weakening: SCcSsu
(11.32)  Excluded middle: SU ~ S
Properties of N
(11.33)  Symmetry of N: SNT =
(11.34) Associativity of N: (SNT)
(11.35) Idempotency of N: sSNnsSs =
(11.36) Zero of N: SNo=
(11.37) Identity of N: SNU =
(11.38) Strengthening: SNnT C
(11.38) Contradiction: SN~ S
Additional Properties
(11.40) Distributivity of U over N:
(11.41)  Distributivity of N over U:
(11.42)  De Morgan:
(11.57)  Antisymmetry:
(11.58)  Reflexivity:
(11.59)  Transitivity:
(11.70)  Transitivity
(11.43) SCTAUCV =

(SuU) C(TUuV)
(11.45) SCT=sSuT="T
(11.47) SUT=U=(Vaz |z €U:

zgS=>xeT)
(11.49) S—T=8n~T
(11.54) S—(TUU) = (S—T)N(S—U)
(11.56) (Vo |: P= Q) = {z | P} C

{z | Q}
(11.61) SCT=SCTA—(TCS)
(11.55) S—(TNU) = (S—T)U(S—U)
(11.51) S—0=35
(11.64) S¢S
(11.66) SCT=Tgs
(11.68) SCTA-(UCT) =

-(U C9)
(11.69b) SCTATCU=SCU
Induction
(12.3) Axiom, Mathematical

Induction over N:
(12.4) Mathematical Induction
over N:

(12.15) properties of golden ratio:

Correctness of loops

TUS

UU=SU(TUU)

S

u

S

T

=U

TNS

NU=SN(TNU)

S

0

S

S

=0

SU(TNU)=(SUT)N(SUU)

SN(TUU)=(SNT)u(SNU)

(a) ~(SUT)=~SN~T

SCTATCS=S=T

sCsS

SCTATCU=SCU

(a) SCTATCU=SCU

(b)) SCTATCU=SCU

(c) SCTATCU=SCU

(11.44) SCTAUCV =
(SNU)C(TNV)

(11.46) SCT=8NnT=S5

(11.48) SNT=0=Vz |:xz €
S=ax¢gT)

(11.50) S—-TCS

(11.52) SN(T—-58)=20

(11.62) SCT=SCTA 3z |
zET:x¢gS)

(11.53) SuU(T -S)=5suT

(11.60) 0CsS

(11.63) SCT=ScTvVS=

(11.65) SCT=S8SCT

(11.67) SCT=T¢S

(11.69a) Bz |lzeS:a¢T)=
S #T

(11.69¢) SCTATCU=SCU

(Vn:N[|: (Vi|0<i<mn:Pi)=

P.n) = (Vn: N |: P.n)

(Y N[ (Vi | 0<i<m:Pi)=

Pn) (Vn : N\Pn)

#? = ¢ +1&d? = d+1

(12.41) do B —+ S od
(12.43) Fundamental

invariance

theorem
(12.45) Checklist

(b) P is a loop invariant:
(c) Exe. of the loop terminates.

{P

Suppose {P A B}S{P} holds and

{P} do B — S od {true}, then

{P} do B — S od {P A ~B} holds.
(a) P is true before the loop. Q = P[S]

A B}S{P}
PAB=T2>0

(d) R holds upon termination: P A =B = R

Tuples and cross-products
Axiom, Cartesian product:
(14.4)  Membership

Relations Functions

(b, c) € p and bpc are interchangable

= {b,c|b

S X (TUU)=(SxT)u(S
SX(TNU)=(SxT)n (S

SX(T—-U)=(SxT)—(S

oo)od

pooUpob

ococMNpo6

€SAceT: (be)}
€ SANyeT

x U)
x U)

x U)

(b,c) € pA(c,d) € o)

is the

(14.5) (x, y)ESXT*(y,z)ETXS

(14.6) S=P=>SXT=TxS=%

(14.7) SXT=Tx=S=dVI=dVS="T

(14.8) Dist of x over U:
(SUT)XU=(SxU)U(T xU)

(14.9) Dist of x over N:
(SNT)yxU=(SxU)N(T xU)

(14.10) Dist of X over -:

(14.11) Monotonicity: T CU = SXxT C S xU

(14.12) SCUATCV =>SXTCUXV

(14.14) (SNT)yXx (UNV)=(SxU)N(T x V)

(14.16) Dom.p = {b: B|(3c| : bpe)}

(14.17) Ran.p = {c: C|(3b] : bpe)}

(14.20) (b,d) € poo = (3clce C:

(14.21)  b(poo)d = (3c|:bpecod)

(14.22)  Associativity of o: po (o 00) = (p

(14.23)  Dist of o over U: po (o U6) =
(cUbB)op=ocopUbop

(14.24) Dist of o over N: po(cnNé6) Cp
(cnNB)opCCocopnébop

(14.25) p0 = ip (the identity relation on B)

p" +1=p"0p (for n > 0)

(14.26) p™ 0 p™ = p™ " (for m > 0,n > 0)

(14.27) (™)™ = p™ "™ (for m > 0,n > 0)

(14.30) Let p be a relation. r(p) is a refliexive closure, s(p) is the
symmetric closure, pT is the transitive closure, and p*
refliexive transitive closure.

(14.39) Definition for fand g f.g=go f



Modern Algebra

e Structure of Algebras
— An algebra has a set S, the carrier, and operations defined on that
carrier.
— Signature of an algebra is the name of carrier and the types of its operators.
— Element 1 in S is a left identity of o over S if lob =15 for all b € S.
— 1 is a right identity if bo1l =1b for all b € S.
— 1 is an identity if it is both a left and right identity.
— Zeroes and inverses are unique.
— Def. Subset T of a set S is closed under an operator if applying operator to
elements of T always produces a result in T.
— Def. (T, ®) is a subalgebra of (S, ®) if T is closed under every operator in
P
— Thrm. A subalgebra of a group is a group iff the inverse of every element of
the subalgebra is in the subalgebra.
— Thrm. A subalgebra of a finite group is a group.
— Thrm. Let b be an element of a group (S, 0,1).
— Let set Sp cosist of all powers of b (including negative powers).
— Then (S, 0,1) is a subgroup of (S, 0, 1).
— A function h is an isomorphism if it is one-to-one and onto,
* each pair of nullary operators can be mapped to each other via h,
* each pair of unary operators, h(~ b) = ~h.b,
* and each pair of binary operators, h(bo c¢) = h.bdh.c.
— A and A are isomorphic and A is called the isomorphic image of A.
e Automorphism is an isomorphism from A to A.
e Homomorphism is an isomorphism but h does not have to be one-to-one
and/or onto.
e Group Theory
— Semigroup is an algebra (S, o), where o is a binary associative operator,
and with no identity.
— Monoid (S, 0, 1) is a semigroup with an identity 1.
— Submonoid contains subset of S with the identity.
— Any semigroup can be made into a monoid by adding an identity element.
— A group is an algebra (S, 0, 1) in which
1. o is a binary, associative operator,
2. 1 is an identity,
3. and every element has an inverse.
— A symmetric, commutative, or abelian group is an albelian monoid in which
every element has an inverse.

Cancellation: bod=cod=b=c;dob=doc=b=c
x

Unique solution: boz:c—mfb_loc zob=c=x=cob 1}

One-to-one: b#c=dob#docib#c=bod#cod
Onto: Bz |:box=c¢c); Bz |:xzob=c)
50 — 1 " ="~ Llob
b™ o b = pmtn b= = (b~ 1)
(®B™M)" = pm'n b =P =b" —p =1

Order of element b in group with identity 1 is the least positive integer m such
that b"™ = 1 (can be co). Thrm: The order of each element in a finite group is
finite. Def: Subalgebra p = (T, 0, 1) of group G = (S, 0, 1) is a subgroup of G if
p is a group. Thrm: Homomorphic image of a group (monoid, semigroup) is a
group (monoid semigroup). THe intersection of two subgroups of a group is a
subgroup (G = (S1 N S2,0,1)).

Boolean AlgebrabDef: (S, ®, ®, ~,0,1) in which:

a) ® and ® are binary associative operators;

b) @ and ® are symmetric;

c) 0 and 1 are identities of @ and ®;

d) unary ~ satisfies b @ (~ b) =1 and b ® (~ b) = 0.

e) ® distributes over B: b ® (c®d) = (b®c) B (b ® d);

f) @ distributes over @: b® (c ® d) = (b ® ¢) ® (b & d). Boolean algebra to
propositional mapping : (S, V, A, -, false, true) You can use this to prove
theorems about boolean algebra from propositional logic.

Idempotency b®b=bbRb=1"b
Zero b®1=1,b@0=0
Absorption b (b®c)=b,b® (b® c)
Cancellation b@c=b@d)A(~bDc

Unique complement b®c 1IANbBRc=

Constant complement ~0=1,~1=0

De Morgan ~(b®dec)=(~b)® (~
bH(~ve)=1=bdc=

Thrm: A homomorphic image of a boolean algebra is a boolean algebra
b < c=b®c=b Theorem. Relation < is a partial order. Axiom:
b<c=b<cAb#c;b<c=bPec=
If an arbitrary boolean algebra (S, ®, ®, ~, 0, 1) is isomorphic to a power-set
algebra, it must have the equivalent to the empty set and singleton sets. (empty
= 0, singletons = atoms)
atom.a=a#O0A(Vb:S|0<b<a:0=bVb=a)
atom.a = a®b=0VaXxb=aatom.aAatombAa#b=a®b=0
(Va | atom.a:a®b=10)=b=0
Thrm. Any element of finite boolean algebra can be written uniquely as b = y,
where y is a y = (Pa | atom.aAa®b # 0:a) Thrm. A boolean
algebra with n atoms has 2" elements. Thrm. A finite boolean algebra
A =(S,®,®,~,0, 1) with n atoms is ]b()m()l‘ph]b to algebra

=(PS,U,N, ~, Q) S), where § = 1.

Operatlon Priority

“sum” of atoms:

[z := e] (textual =<>€CCD2|
substitution) (high ./ + mod gcd VA

precedence) + —UnN xo e

. (function application) T = (low precedence)

+ — —# ~ P (unary prefix #
operators) an

Definitions

Formal Logic SyStemLet S be a set of interpretations for a logic and F be a
formula of the logic.

- F is satisfiable (under S) iff at least one interpretation of S maps F to true.

- F is valid (under S) iff every interpretation in S maps F to true.

- An interpretation is a model for a logic iff every theorem is mapped to true by
the interpretation.

- A logic is sound iff every theorem is valid.

- A logic is complete iff every valid formula is a theorem.

- Soundness means that the theorems are true statements about the domain of
discourse,

- Completeness means that every valid formula can be proved.

- A sound and complete logic allows exactly the valid formulas to be proved.

- A boolean expression is satisfied in state s iff it evaluates to true in state s.

- A boolean expression is valid iff it is satisfied in every state.

- A valid boolean expression is called a tautology.

- A boolean expression is satisfiable iff there is a state in which it is satisfied.

- The atomic proposition is a type of statement, which contains a truth value
that can be true or false.

SetsA set S of sets is a partition of a set T if every element of T is exactly one
of the elements of S.

Equivalence Relations and Partial OrdersAn equivalence relation
must be reflexive, symmetric, and transitive.

A Partial Order must be reflexive, anti-symmetric, and transitive.

Final Questions

Properties of set Difference
Question Prove

1. S—T=8Nn~T 2. 5-TCS
3.8 -0= 4. SN(T —-8)=10
5. SU(T —8)=SUT 6. S—(TUU)=(S—-T)n(S—U)

7. S —(TNU)

Answers

1. S—T={Va |z € SAz¢T} by (11.22), Axiom of Difference. Then
={z|z€SAzE~T} by (11.18). Then = SN ~ T by (11.21), Axiom of
Intersection.

2. Let 2 € S — T be arbitrary. Then z € S A s ¢ T by (11.22), Axiom of
Difference. Then = € S. Thus by (11.13), Axiom of Subset, S — T C S.

3. S—0={Ve |z € SAxz¢0} by (11.22), Axiom of Difference. Then

{z |2 € SAxe~D} by (11.18). Then

={z|zeSAzecU}={a|zec S}=S by (11.17), Axiom of Complement.
Thus S — 0 S.

4. SN(T —8) = SN (TN ~ S) by (11.49). Then, = (SN~ S)NT =0 N T by
(11.39), Contradiction, and = 0, by (11.36), Zero of N.

5. Since T — S = TN ~ S, then SU (T — S) = SU (TN ~ S). Consider
SV (t A -s). We have s V (t A =s) = (s V) A (sV —s) = s V¢, so the result
follows from Methatheorem (11.25).

6. S— (TUU)= SN~ (T UU) by (11.49). Now consider s A —(¢ V u). We have
= s A (=t V =u) by De Morgan’s Law. Then = s A =t V s A ~u by
distributivity, so from Methatheorem (11.25), we have
SN~ (TUuU)=(SN~T)N (SN ~ U), so from (11.49), we have
S—(TuU)=(S—-T)N(S—-U).

7. Same thing as (6.).

Assignment 3, Question 11

Question Prove the correctness of the following loop, assigning to Fj, the nth

fibonacci number:

(S—T)u (s —U)

{Q:n >0} k,b,c:=0,1,0;
{invariant P: 0 < k< nAb=F,_1 Ac= Fy}
dok#n — k,b,c:=k+1,c,b+ c;od
{R:c=Fn}
Solution Prove P is true before execution of the loop.
Plk,b,c:=0,1,0]
=0<0<nAl=F,

_1AN0=Fqy (Textual Substitution)

=0<nAl=

F_1A0=Fy=0<mn

Prove P is a loop invariant.

Plk,b,c:=k+1,¢,b+c]
=0<k+1<nAc=Fpii_1Abtec=Fg

(Textual Substitution)
=-1<k<n—-1Ac=F,Ab+tec=Fpi

Sk#EnA—1<k<n—1Ac=F,Ab=Fy 1 —F, (k<n—1=k#n)
ck#nAO0<k<nAc=FyAb=Fy iy — Fy (Strengthening)

=k#nA0<k<nAc=F,Ab=Fp_q (Fibonacci)

=PAB (Def. of P A B)

Prove execution of the loop terminates.
The value of n — k is always at least 0 and it decreases by 1 each iteration; hence,
n — k becomes 0 such that the condition is false and the loop terminates.
Prove R holds upon termination.
P AN-B

=0<k<nAb=Fy (Ac=FyAk=n
(Weakening)

(Leibniz substitution)

S c=FyAk=
=c= Fp

Prove Axiom 9.10 and 9.11

Prove Axiom 9.10(Vz | QV R: P) = (Vo | Q: P) A (Vz | R: P) by (8.18)

Idempotent Range Split. = (Va | Q : P) by Weakening.

Prove Axiom 9.11(Vaz | R: PAQ) = (Vo | R: P) A (V& | R: Q) by (8.15),

Distributivity. = (Va | R : P) by Weakening.

Lecture 15, Symmetric Difference

Question Let R be a non-empty binary relation on B. Define the relations R%¢,

<1 and < on B as follows:

1. bR%c < bRc A ~(cRTb) for all b, c € B, i.e. R%C is R after removing all
cycles.

2. b <y ce bRTcA=(cRTY) for all b,c € B, ie
<1=Rtn(~RrRT) =Rt Nn(Bx B\ R,

3. b <g c < bR%c

Prove that <7 and <9 are sharp partial orders and <9C <.

Answers Prove 1.: < is a sharp partial order

e bRTbH A —(bRTH) = false so < is irreflexive.

e To prove transitivity, consider b <1 ¢ <1 d =
(bRTe A =(eRTB) A (cRTd A ~(dRTe)) = bRTcAcRTd=c < d.

e To show —(dR7Tb), assume dRTb. We already have bRT ¢ and
drto AbRTce = dRTbRTc = d(RT 0o RT)ec = dRT ¢, a contradictoin, as
¢ <1 d= —(dRtc). Thus —~(dRTb) must be true.

e Thus <7 is transitive, thus it’s a sharp partial order.

Prove 2.: <9 is a sharp partial order

® <o is transitive because it is a transitive closure of R%€, so only need to prove
it is irreflexive. .

e —cRTb means that =cR%b for all i« > 1, which means R%€ is irreflexive.

e Suppose b <9 b for some b € B. This means b(R*®)J b for some j > 1. Since
ROC is irreflexive, j > 1, i.e. b(RY)J~1cRACp. Since RAC is irreflexive, ¢ # b.
But ¢cR%Cb = —bRTc = V(i |: =bR%c) = —bRI~Llc = —b(R*)I~1¢ a
contradiction, <g is irreflexive.

e Thus <o is a sharp partial order.

Prove <5C <1

e b<icebRTcA(=cRTY) for all b, c € B.

o b <5 c e b(R*)Tc where bR*Cc & bRe A —=(cRTb)

e We will use the result: if @ is transitive then QT = Q (we will prove it later).

e bRc < bRe A ~(cRTb) < bRTc A =(cRTb) & b < ¢, so RAC C<;.

o RAC C=y= (R)T C (xF =<3

e Hence <o= (R*®)T C<y.

Lecture 15, Prove Binary Relation by Induction

LetR be a transitive relation on B. Prove RT = R.

e Recall RT = J;~q R*, or bRTc = 3(i |: i > 0 A bRYc).

e From the definition of R, we have R C RT.

e We now show RT C R. By the definition of R+, it suffices to show

(Vi |0 < i:R*C R) by induction.
e Base case: R C R.
e Inductive Step, Assume R? C R, i.e., bRc = bRc.
e Consider

bRl & 3(d | de B:bR'dAdRe) < 3(d|d € B:bRdA dRc) = bRe. The
last step is by transitivity of R. Hence R* C R.
This means RT = R.
A551gnment 3, Question 19
Question Show that (S,0,1) is a group if o is a binary associative operator with
a left identity 1 and every element has a left inverse.
Answer Prove left cancellation
e We first prove left cancellation, dob =doc =b = c.
— LHS < RHS follows from Leibniz.
— LHS = RHS: b=d ~odob= dlodoc by assumption, so now by
identity we have = c.
e Prove left idenity is also a right identity:
1=1=1o1l=1=b"lobol=b"lob=0bol=b by left cancelation.
e Since 1 is both left and right identity, it is the unique identity by Theorem
(18.2). We now must show that every element has an inverse.

e By assumption, a left inverse exists, so show it is a right inverse.
e Let b~ ! be the left inverse of b. Then,
bl =pl=10b "l =b"lo1=b"lobob l=b"loi=bob1=1.

Thus we have that there is an inverse.

Prove Boolean Algebra
Question Let (S, ®, ®, ~,0,1) be a boolean algebra. Prove that for all b, ¢, € S,
wehave b c=LAc®b=0 < c=n~ b.
e (<): from Section Boolean Algebra d), b ® (~ b) = 1 and b ® (~ b) = 0.
e (=): We will start from ¢ =~ b and work backwards.
¢ c=~nbScR1=~bRLE=c®BO(~D))=~bRDBec) & (c®b)D(c® (~
) =0@® (~b®c) < c® (~ b) = (~ b) ® ¢ which is true by symmetry.
® Reverse the steps to get the proper proof.
Closures Rt = U2 aR%c (transitive); R* = RT Uip (reflexive transitive)
18.51 Absorption
b (bR®c)=(bR1)BBRc) =301
Cancellation
Prove b@c=b@dA(~bBc=~b@d) =c=d.
o (=) bPec=bBdA(~bBHc=~b®d) < Leibnizc:i=d >=bBHd =
bBGAdA(~bDd=~bdd) =true A true = true
o (=)
— ¢ =d < Leibniz >=b®c=bdd
— ¢ =d < Leibniz >=~ b c=~bd d
Thmb@c,b@dA(Nb@c,Nb@d).

) =b®1 < zero >=b
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