
Theorems

Negation, inequivalence, and false
(3.11) ¬p ≡ q ≡ p ≡ ¬q
(3.14) (p ̸≡ q) ≡ ¬p ≡ q
(3.15) (¬p ≡ p ≡ false)
(3.18) Mutual Associativity ((p ̸≡ q) ≡ r) ≡ (p ̸≡ (q ≡ r))
(3.19) Mutual interchangeability p ̸≡ q ≡ r ≡ p ≡ q ̸≡ r

Disjunction
(3.27) Axiom, Distributivity of ∨ over ≡ p ∨ (q ≡ r) ≡ p ∨ q ≡ p ∨ r
(3.28) Axiom, Excluded Middle p ∨ ¬p
(3.31) Distributivity of ∨ over ∨ p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)
(3.32) p ∨ q ≡ p ∨ ¬q ≡ p

Conjunction
(3.35) Axiom, Golden rule p ∧ q ≡ p ≡ q ≡ p ∨ q
(3.41) Distributivity of ∧ over ∧ p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
(3.43) Absorption (a) p ∧ (p ∨ q) ≡ p

(b) p ∨ (p ∧ q) ≡ p
(3.44) Absorption (a) p ∧ (¬p ∨ q) ≡ p ∧ q

(b) p ∨ (¬p ∧ q) ≡ p ∨ q
(3.47) De Morgan (a) ¬(p ∧ q) ≡ ¬p ∨ ¬q)

(b) ¬(p ∨ q) ≡ ¬p ∧ ¬q)
(3.48) p ∧ q ≡ p ∧ ¬q ≡ ¬p
(3.49) p ∧ (q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p
(3.50) p ∧ (q ≡ p) ≡ p ∧ q
(3.51) Replacement (p ≡ q) ∧ (r ≡ p) ≡ (p ≡ q) ∨ (r ≡ q)
(3.52) Definition of ≡ p ≡ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(3.53) Exclusive or p ̸≡ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q)
(3.55) (p ∧ q) ∧ r ≡ p ≡ q ≡ r

≡ p ∨ q ≡ q ∨ r ≡ r ∨ p ≡ p ∨ q ∨ r

Implication
(3.57) Axiom, Def of ⇒ p ⇒ q ≡ p ∨ q ≡ q
(3.59) p ⇒ q ≡ ¬p ∨ q
(3.60) p ⇒ q ≡ p ∧ q ≡ p
(3.61) Contrapositive p ⇒ q ≡ ¬q ⇒ ¬p
(3.62) p ⇒ (q ≡ r) ≡ p ∧ q ≡ p ∧ r
(3.63) Distr. of ⇒ over ≡ p ⇒ (q ≡ r) ≡ p ⇒ q ≡ p ⇒ r
(3.64) p ⇒ (q ⇒ r) ≡ (p ⇒ q) ⇒ (p ⇒ r)
(3.65) Shunting p ∧ q ⇒ r ≡ p ⇒ (q ⇒ r)
(3.66) p ∧ (p ⇒ q) ≡ p ∧ q
(3.67) p ∧ (q ⇒ p) ≡ p
(3.68) p ∨ (p ⇒ q) ≡ true
(3.69) p ∨ (q ⇒ p) ≡ q ⇒ p
(3.70) p ∨ q ⇒ p ∧ q ≡ p ≡ q
(3.71) Reflexivity of ⇒ p ⇒ p ≡ true
(3.72) Right zero of ⇒ p ⇒ true ≡ true
(3.73) Left identity of ⇒ true ⇒ p ≡ p
(3.74) p ⇒ false ≡ ¬p
(3.75) false ⇒ p ≡ true
(3.76) Weakening/strengthening (a) p ⇒ p ∨ q

(b) p ∧ q ⇒ p
(c) p ∧ q ⇒ p ∨ q
(d) p ∨ (q ∧ r) ⇒ p ∨ q
(e) p ∧ q ⇒ p ∧ (q ∨ r)

(3.77) Modus ponens p ∧ (p ⇒ q) ⇒ q
(3.78) (p ⇒ r) ∧ (q ⇒ r) ≡ (p ∨ q ⇒ r)
(3.79) (p ⇒ r) ∧ (¬p ⇒ r) ≡ r
(3.80) Mutual implication (p ⇒ q) ∧ (q ⇒ p) ≡ (p ≡ q)
(3.81) Antisymmetry (p ⇒ q) ∧ (q ⇒ p) ⇒ (p ≡ q)
(3.82) Transitivity (a) (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)

(b) (p ≡ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)
(c) (p ⇒ q) ∧ (q ≡ r) ⇒ (p ⇒ r)

General Laws of Quantification

For symmetric and associative binary operator ⋆ with identity u.
(8.13) Axiom, Empty range: (⋆x|false : P ) = u
(8.14) Axiom, One-point rule: Provided ¬occurs(‘x’, ‘E’),

(⋆x|x = E : P ) = P [x := E]
(8.15) Axiom, Distributivity: Provided each quantification is defined,

(⋆x|R : P ) ⋆ (⋆x|R : Q) = (⋆x|R : P ⋆ Q)
(8.16) Axiom, Range split: Provided R ∧ S ≡ false and each quantification

is defined, (⋆x|R ∨ S : P ) = (⋆x|R ∧ S : P ) = (⋆x|R : P ) ⋆ (⋆X|S : P )
(8.17) Axiom, Range split: Provided each quantification is defined,

(⋆x|R ∨ S : P ) ⋆ (⋆x|R ∧ S : P ) = (⋆x|R : P ) ⋆ (⋆x|S : P )
(8.18) Axiom, Range split for idempotent ⋆: Prov. each quant. is defined,

(⋆x|R ∨ S : P ) = (⋆x|R : P ) ⋆ (⋆x|S : P )
(8.19) Axiom, Interchange of dummies: Provided each quantification is

defined, ¬occurs(‘y’, ‘R’), and ¬occurs(‘x’, ‘Q’),
(⋆x|R : (⋆y|Q : P )) = (⋆y|Q : (⋆x|R : P ))

(8.20) Axiom, Nesting: Provided ¬occurs(‘y’, ‘R’),
(⋆x, y|R ∧ Q : P ) = (⋆x|R : (⋆y|Q : P ))

(8.21) Axiom, Dummy renaming: Provided ¬occurs(‘y’, ‘R, P ’),
(⋆x|R : P ) = (⋆y|R[x := y] : P [x := y])

(8.22) Change of dummy: Provided ¬occurs(‘y’, ‘R, P ’), and f has an
inverse, (⋆x|R : P ) = (⋆y|R[x := f.y] : P [x := f.y])

(8.23) Split off term: (⋆i|0 ≤ i < n + 1 : P ) = (⋆i|0 ≤ i < n : P ) ⋆ Pi
n

Theorems of the Predicate Calculus

Universal quantification
(9.2) Axiom, Trading: (∀x|R : P ) ≡ (∀x| : R ⇒ P )
(9.3) Trading: (a) (∀x|R : P ) ≡ (∀x| : ¬R ∨ P )

(b) (∀x|R : P ) ≡ (∀x| : R ∧ P ≡ R)
(c) (∀x|R : P ) ≡ (∀x| : R ∨ P ≡ P )

(9.4) Trading: (a) (∀x|Q ∧ R : P ) ≡ (∀x|Q : R ⇒ P )
(b) (∀x|Q ∧ R : P ) ≡ (∀x|Q : ¬R ∨ P )
(c) (∀x|Q ∧ R : P ) ≡ (∀x|Q : R ∧ P ≡ R)
(d) (∀x|Q ∧ R : P ) ≡ (∀x|Q : R ∨ P ≡ P )

(9.5) Axiom,
Distributivity of ∨
over ∀:

Prov. ¬occurs(‘x’, ‘P ’),
P ∨ (∀x|R : Q) ≡ (∀x|R : P ∨ Q)

(9.6) Provided ¬occurs(‘x’, ‘P ’),
(∀x|R : P ) ≡ P ∨ (∀x| : ¬R)

(9.7) Distributivity of ∧
over ∀:

Provided ¬occurs(‘x’, ‘P ’), ¬(∀x| : ¬R) ⇒
((∀x|R : P ∧ Q) ≡ P ∧ (∀x|R : Q))

(9.8) (∀x|R : true) ≡ true
(9.9) (∀x|R : P ≡ Q) ⇒ ((∀x|R : P ) ≡ (∀x|R : Q))
(9.10) Range weaken-

ing/strengthening:
(∀x|Q ∨ R : P ) ⇒ (∀x|Q : P )

(9.11) Body weaken-
ing/strengthening:

(∀x|R : P ∧ Q) ⇒ (∀x|R : P )

(9.12) Monotonicity of ∀: (∀x|R : Q ⇒ P ) ⇒ ((∀x|R : Q) ⇒ (∀x|R :
P ))

(9.13) Instantiation: (∀x| : P ) ⇒ P [x := e]
(9.16) P is a theorem iff (∀x| : P ) is a theorem.

Existential quantification
(9.17) Axiom,

Generalized De
Morgan:

(∃x|R : P ) ≡ ¬(∀x|R : ¬P )

(9.18) Generalized De
Morgan:

(a) ¬(∃x|R : ¬P ) ≡ (∀x|R : P )

(b) ¬(∃x|R : P ) ≡ (∀x|R : ¬P )
(c) (∃x|R : ¬P ) ≡ ¬(∀x|R : P )

(9.19) Trading: (∃x|R : P ) ≡ (∃x| : R ∧ P )
(9.20) Trading: (∃|Q ∧ R : P ) ≡ (∃x|Q : R ∧ P )
(9.21) Distributivity of

∧ over ∃:
Provided ¬occurs(‘x’, ‘P ’),
P ∧ (∃x|R : Q) ≡ (∃x|R : P ∧ Q)

(9.22) (∃x|R : false) ≡ false
(9.23) Distributivity of

∨ over ∃:
Provided ¬occurs(‘x’, ‘P ’),
(≡ x| : R) ⇒ ((≡ x|R : P ∨Q) ≡ P ∨ (∃x|R : Q))

(9.24) (∃x|R : false) ≡ false
(9.25) Range weaken-

ing/strengthening:
(∃x|R : P ) ⇒ (∃x|Q ∨ R : P )

(9.26) Body weaken-
ing/strengthening:

(∃x|R : P ) ⇒ (∃x|R : P ∨ Q)

(9.27) Monotonicity of
∃:

(∀x|R : Q ⇒ P ) ⇒ ((∃x|R : Q) ⇒ (∃x|R : P ))

(9.28) ∃-Introduction: P [x := E] ⇒ (∃x| : P )
(9.29) Interchange of

quantifications:
Provided ¬occurs(‘y’, ‘R’) and
¬occurs(‘x’, ‘Q’),
(∃x|R : (∀y|Q : P )) ⇒ (∀y|Q : (∃x|R : P ))

(9.30) Provided ¬occurs(‘x̂’, ‘Q’),
(∃x|R : P ) ⇒ Q is a theorem iff (R ∧ P )[x :=
x̂] ⇒ Q is a theorem

Conditional Statements
(10.5) Proof method for IF: To prove {Q}IF{R}, prove {Q ∧ B}S1{R}
and {Q ∧ ¬B}S2{R}

Find precondition Given {?}S{R}. To find ? textual sub S into R

Set Theory
(11.3) Axiom, Set membership: Provided

¬occurs(‘x’, ‘F ’), F ∈
x | R : E ≡ (∃x | R : F = E)

(11.4) Axiom, Extensionality: S = T ≡ (∀x |: x ∈ S ≡ x ∈
T )

(11.5) S = {x | x ∈ S : x}
(11.6) Provided ¬occurs(‘y’, ‘R’) and

¬occurs(‘y’, ‘E’),
{x | R : E} = {y | (∃x | R :
y = E)}

(11.7) x ∈ {x | R} ≡ R
(11.9) {x | Q} = {x | R} ≡ (∀x |:

Q ≡ R)
(11.12) Axiom, Size: #S = (

∑
x | x ∈ S : 1)

(11.13) Axiom, Subset: S ⊆ T ≡ (∀x | x ∈ S : x ∈ T )
(11.14) Axiom, Proper subset: S ⊂ T ≡ S ⊆ T ∧ S ̸= T
(11.17) Axiom, Complement: v ∈∼ S ≡ v ∈ U ∧ v ̸∈ S
(11.18) v ∈∼ S ≡ v /∈ S (for v in U)
(11.19) ∼∼ S = S
(11.20) Axiom, Union: v ∈ S ∪ T ≡ v ∈ S ∨ v ∈ T
(11.21) Axiom, Intersection: v ∈ S ∩ T ≡ v ∈ S ∧ v ∈ T
(11.22) Axiom, Difference: v ∈ S − T ≡ v ∈ S ∧ v ̸∈ T
(11.23) Axiom, Power set: v ∈ PS ≡ v ⊆ S
(11.24) Definition. For Es, a set

expression, Ep, a predicate
expression can be calculated:

∅ → false,U → true,∪ →
∨,∩ → ∧,∼→ ¬

(11.25) Metatheorem. For any set
expressions Es and Fs

Es = Fs ⇔ Ep ≡ Fp,Es ⊆
Fs ⇔ Ep ⇒ Fp,Es = U ⇔
Ep ≡ true

Properties of ∪
(11.26) Symmetry of ∪: S ∪ T = T ∪ S
(11.27) Associativity of ∪: (S ∪ T ) ∪ U = S ∪ (T ∪ U)
(11.28) Idempotency of ∪: S ∪ S = S
(11.29) Zero of ∪: S ∪ U = U
(11.30) Identity of ∪: S ∪ ∅ = S
(11.31) Weakening: S ⊆ S ∪ T
(11.32) Excluded middle: S∪ ∼ S = U

Properties of ∩
(11.33) Symmetry of ∩: S ∩ T = T ∩ S
(11.34) Associativity of ∩: (S ∩ T ) ∩ U = S ∩ (T ∩ U)
(11.35) Idempotency of ∩: S ∩ S = S
(11.36) Zero of ∩: S ∩ ∅ = ∅
(11.37) Identity of ∩: S ∩ U = S
(11.38) Strengthening: S ∩ T ⊆ S
(11.38) Contradiction: S∩ ∼ S = ∅
Additional Properties
(11.40) Distributivity of ∪ over ∩: S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U)
(11.41) Distributivity of ∩ over ∪: S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U)
(11.42) De Morgan: (a) ∼ (S ∪ T ) =∼ S∩ ∼ T
(11.57) Antisymmetry: S ⊆ T ∧ T ⊆ S ≡ S = T
(11.58) Reflexivity: S ⊆ S
(11.59) Transitivity: S ⊆ T ∧ T ⊆ U ⇒ S ⊆ U
(11.70) Transitivity (a) S ⊆ T ∧ T ⊂ U ⇒ S ⊂ U

(b) S ⊂ T ∧ T ⊆ U ⇒ S ⊂ U
(c) S ⊂ T ∧ T ⊂ U ⇒ S ⊂ U

(11.43) S ⊆ T ∧ U ⊆ V ⇒
(S ∪ U) ⊆ (T ∪ V )

(11.44) S ⊆ T ∧ U ⊆ V ⇒
(S ∩ U) ⊆ (T ∩ V )

(11.45) S ⊆ T ≡ S ∪ T = T (11.46) S ⊆ T ≡ S ∩ T = S
(11.47) S ∪ T = U ≡ (∀x | x ∈ U :

x /∈ S ⇒ x ∈ T )
(11.48) S ∩ T = ∅ ≡ (∀x |: x ∈

S ⇒ x /∈ T )
(11.49) S − T = S∩ ∼ T (11.50) S − T ⊆ S
(11.54) S−(T∪U) = (S−T )∩(S−U) (11.52) S ∩ (T − S) = ∅
(11.56) (∀x |: P ⇒ Q) ≡ {x | P} ⊆

{x | Q}
(11.62) S ⊂ T ≡ S ⊆ T ∧ (∃x |

x ∈ T : x /∈ S)
(11.61) S ⊂ T ≡ S ⊆ T ∧ ¬(T ⊆ S) (11.53) S ∪ (T − S) = S ∪ T
(11.55) S−(T∩U) = (S−T )∪(S−U) (11.60) ∅ ⊆ S
(11.51) S − ∅ = S (11.63) S ⊆ T ≡ S ⊂ T ∨ S = T
(11.64) S ̸⊂ S (11.65) S ⊂ T ⇒ S ⊆ T
(11.66) S ⊂ T ⇒ T ̸⊆ S (11.67) S ⊆ T ⇒ T ̸⊂ S
(11.68) S ⊆ T ∧ ¬(U ⊆ T ) ⇒

¬(U ⊆ S)
(11.69a) (∃x | x ∈ S : x /∈ T ) ⇒

S ̸= T
(11.69b) S ⊂ T ∧ T ⊆ U ⇒ S ⊂ U (11.69c) S ⊂ T ∧T ⊂ U ⇒ S ⊂ U

Induction
(12.3) Axiom, Mathematical

Induction over N:
(∀n : N |: (∀i | 0 ≤ i < n : P.i) ⇒
P.n) ⇒ (∀n : N |: P.n)

(12.4) Mathematical Induction
over N:

(∀n : N |: (∀i | 0 ≤ i < n : P.i) ⇒
P.n) ≡ (∀n : N |: P.n)

(12.15) properties of golden ratio: ϕ2 = ϕ + 1&ϕ̂2 = ϕ̂ + 1

Correctness of loops
(12.41) do B → S od
(12.43) Fundamental

invariance
theorem

Suppose {P ∧ B}S{P} holds and
{P} do B → S od {true}, then
{P} do B → S od {P ∧ ¬B} holds.

(12.45) Checklist (a) P is true before the loop. Q ⇒ P[S]
(b) P is a loop invariant: {P ∧ B}S{P}
(c) Exe. of the loop terminates. P ∧ B ⇒ T > 0
(d) R holds upon termination: P ∧ ¬B ⇒ R

Tuples and cross-products
Axiom, Cartesian product: S × T = {b, c | b ∈ S ∧ c ∈ T : (b, c)}

(14.4) Membership ⟨x, y⟩ ∈ S × T ≡ x ∈ S ∧ y ∈ T

Relations Functions
⟨b, c⟩ ∈ ρ and bρc are interchangable

(14.5) ⟨x, y⟩ ∈ S × T ≡ ⟨y, x⟩ ∈ T × S
(14.6) S = Φ ⇒ S × T = T × S = Φ
(14.7) S × T = T× ≡ S = Φ ∨ T = Φ ∨ S = T
(14.8) Dist of × over ∪: S × (T ∪ U) = (S × T ) ∪ (S × U)

(S ∪ T ) × U = (S × U) ∪ (T × U)
(14.9) Dist of × over ∩: S × (T ∩ U) = (S × T ) ∩ (S × U)

(S ∩ T ) × U = (S × U) ∩ (T × U)
(14.10) Dist of × over -: S × (T − U) = (S × T ) − (S × U)
(14.11) Monotonicity: T ⊆ U ⇒ S × T ⊆ S × U
(14.12) S ⊆ U ∧ T ⊆ V ⇒ S × T ⊆ U × V
(14.14) (S ∩ T ) × (U ∩ V ) = (S × U) ∩ (T × V )
(14.16) Dom.ρ = {b : B|(∃c| : bρc)}
(14.17) Ran.ρ = {c : C|(∃b| : bρc)}
(14.20) ⟨b, d⟩ ∈ ρ ◦ σ ≡ (∃c|c ∈ C : ⟨b, c⟩ ∈ ρ ∧ ⟨c, d⟩ ∈ σ)
(14.21) b(ρ ◦ σ)d ≡ (∃c| : b ρ c σ d)
(14.22) Associativity of ◦: ρ ◦ (σ ◦ θ) = (ρ ◦ σ) ◦ θ
(14.23) Dist of ◦ over ∪: ρ ◦ (σ ∪ θ) = ρ ◦ σ ∪ ρ ◦ θ

(σ ∪ θ) ◦ ρ = σ ◦ ρ ∪ θ ◦ ρ
(14.24) Dist of ◦ over ∩: ρ ◦ (σ ∩ θ) ⊆ ρ ◦ σ ∩ ρ ◦ θ

(σ ∩ θ) ◦ ρ ⊆ σ ◦ ρ ∩ θ ◦ ρ

(14.25) ρ0 = iB (the identity relation on B)
ρn + 1 = ρn ◦ ρ (for n ≥ 0)

(14.26) ρm ◦ ρn = ρm+n (for m ≥ 0, n ≥ 0)
(14.27) (ρm)n = ρm.n (for m ≥ 0, n ≥ 0)
(14.30) Let ρ be a relation. r(ρ) is a refliexive closure, s(ρ) is the

symmetric closure, ρ+ is the transitive closure, and ρ∗ is the
refliexive transitive closure.

(14.39) Definition for f and g f � g ≡ g ◦ f



Modern Algebra
• Structure of Algebras

– An algebra has a set S, the carrier, and operations defined on that
carrier.

– Signature of an algebra is the name of carrier and the types of its operators.
– Element 1 in S is a left identity of ◦ over S if 1 ◦ b = b for all b ∈ S.
– 1 is a right identity if b ◦ 1 = b for all b ∈ S.
– 1 is an identity if it is both a left and right identity.
– Zeroes and inverses are unique.
– Def. Subset T of a set S is closed under an operator if applying operator to

elements of T always produces a result in T.
– Def. ⟨T,Φ⟩ is a subalgebra of ⟨S,Φ⟩ if T is closed under every operator in

Φ.
– Thrm. A subalgebra of a group is a group iff the inverse of every element of

the subalgebra is in the subalgebra.
– Thrm. A subalgebra of a finite group is a group.
– Thrm. Let b be an element of a group ⟨S, ◦, 1⟩.
– Let set Sb cosist of all powers of b (including negative powers).
– Then ⟨Sb, ◦, 1⟩ is a subgroup of ⟨S, ◦, 1⟩.
– A function h is an isomorphism if it is one-to-one and onto,

∗ each pair of nullary operators can be mapped to each other via h,
∗ each pair of unary operators, h(∼ b) = ∼̂h.b,
∗ and each pair of binary operators, h(b ◦ c) = h.b◦̂h.c.

– A and Â are isomorphic and Â is called the isomorphic image of A.
• Automorphism is an isomorphism from A to A.
• Homomorphism is an isomorphism but h does not have to be one-to-one

and/or onto.
• Group Theory

– Semigroup is an algebra ⟨S, ◦⟩, where ◦ is a binary associative operator,
and with no identity.

– Monoid ⟨S, ◦, 1⟩ is a semigroup with an identity 1.
– Submonoid contains subset of S with the identity.
– Any semigroup can be made into a monoid by adding an identity element.
– A group is an algebra (S, ◦, 1) in which

1. ◦ is a binary, associative operator,
2. 1 is an identity,
3. and every element has an inverse.

– A symmetric, commutative, or abelian group is an albelian monoid in which
every element has an inverse.

Cancellation: b ◦ d = c ◦ d ≡ b = c; d ◦ b = d ◦ c ≡ b = c

Unique solution: b ◦ x = c ≡ x = b−1 ◦ c; x ◦ b = c ≡ x = c ◦ b−1

One-to-one: b ̸= c ≡ d ◦ b ̸= d ◦ c; b ̸= c ≡ b ◦ d ̸= c ◦ d
Onto: (∃x |: b ◦ x = c); (∃x |: x ◦ b = c)

b0 = 1
bm ◦ bn = bm+n

(bm)n = bm·n

bn = bn−1 ◦ b
b−n = (b−1)n

bn = bp ≡ bn − p = 1

Order of element b in group with identity 1 is the least positive integer m such
that bm = 1 (can be ∞). Thrm: The order of each element in a finite group is
finite. Def: Subalgebra ρ = ⟨T, ◦, 1⟩ of group G = ⟨S, ◦, 1⟩ is a subgroup of G if
ρ is a group. Thrm: Homomorphic image of a group (monoid, semigroup) is a
group (monoid semigroup). THe intersection of two subgroups of a group is a
subgroup (G = ⟨S1 ∩ S2, ◦, 1⟩).

Boolean AlgebraDef: ⟨S,⊕,⊗,∼, 0, 1⟩ in which:
a) ⊕ and ⊗ are binary associative operators;
b) ⊕ and ⊗ are symmetric;
c) 0 and 1 are identities of ⊕ and ⊗;
d) unary ∼ satisfies b ⊕ (∼ b) = 1 and b ⊗ (∼ b) = 0.
e) ⊗ distributes over ⊕: b ⊗ (c ⊕ d) = (b ⊗ c) ⊕ (b ⊗ d);
f) ⊕ distributes over ⊗: b ⊕ (c ⊗ d) = (b ⊕ c) ⊗ (b ⊕ d). Boolean algebra to
propositional mapping : ⟨S,∨,∧,¬, false, true⟩ You can use this to prove
theorems about boolean algebra from propositional logic.

Idempotency b ⊕ b = b, b ⊗ b = b
Zero b ⊕ 1 = 1, b ⊗ 0 = 0
Absorption b ⊕ (b ⊗ c) = b, b ⊗ (b ⊕ c) = b
Cancellation (b ⊕ c = b ⊕ d) ∧ (∼ b ⊕ c =∼ b ⊕ d) ≡ c = d

(b ⊗ c = b ⊗ d) ∧ (∼ b ⊗ c =∼ b ⊗ d) ≡ c = d
Unique complement b ⊕ c = 1 ∧ b ⊗ c = 0 ≡ c =∼ b
Constant complement ∼ 0 = 1,∼ 1 = 0
De Morgan ∼ (b ⊕ c) = (∼ b) ⊗ (∼ c),∼ (b ⊗ c) = (∼ b) ⊕ (∼ c)

b ⊕ (∼ c) = 1 ≡ b ⊕ c = b, b ⊗ (∼ c) = 0 ≡ b ⊗ c = b

Thrm: A homomorphic image of a boolean algebra is a boolean algebra Axiom:
b ≤ c ≡ b ⊗ c = b Theorem. Relation ≤ is a partial order. Axiom:
b < c ≡ b ≤ c ∧ b ̸= c; b ≤ c ≡ b ⊕ c = c

If an arbitrary boolean algebra ⟨S,⊕,⊗,∼, 0, 1⟩ is isomorphic to a power-set
algebra, it must have the equivalent to the empty set and singleton sets. (empty
= 0, singletons = atoms)

atom.a ≡ a ̸= 0 ∧ (∀b : S | 0 ≤ b ≤ a : 0 = b ∨ b = a)
atom.a ⇒ a ⊗ b = 0 ∨ a × b = a atom.a ∧ atom.b ∧ a ̸= b ⇒ a ⊗ b = 0
(∀a | atom.a : a ⊗ b = 0) ⇒ b = 0

Thrm. Any element of finite boolean algebra can be written uniquely as b = y,
where y is a “sum” of atoms: y = (⊕a | atom.a ∧ a ⊗ b ̸= 0 : a) Thrm. A boolean
algebra with n atoms has 2n elements. Thrm. A finite boolean algebra
A = ⟨S,⊕,⊗,∼, 0, 1⟩ with n atoms is isomorphic to algebra
Â = ⟨PŜ,∪,∩,∼, ∅, S⟩, where Ŝ = 1..n.

Operation Priority
[x := e] (textual
substitution) (high
precedence)
. (function application)
+ − ¬# ∼ P (unary prefix
operators)

∗∗
·/ ÷ mod gcd
+ − ∪ ∩ ×◦
↑↓
#
◁ ▷ ˆ

=<>∈⊂⊆⊃⊇|
∨∧
⇒⇐
≡ (low precedence)

Definitions
Formal Logic SystemLet S be a set of interpretations for a logic and F be a
formula of the logic.
- F is satisfiable (under S) iff at least one interpretation of S maps F to true.
- F is valid (under S) iff every interpretation in S maps F to true.
- An interpretation is a model for a logic iff every theorem is mapped to true by
the interpretation.
- A logic is sound iff every theorem is valid.
- A logic is complete iff every valid formula is a theorem.
- Soundness means that the theorems are true statements about the domain of
discourse,
- Completeness means that every valid formula can be proved.
- A sound and complete logic allows exactly the valid formulas to be proved.
- A boolean expression is satisfied in state s iff it evaluates to true in state s.
- A boolean expression is valid iff it is satisfied in every state.
- A valid boolean expression is called a tautology.
- A boolean expression is satisfiable iff there is a state in which it is satisfied.
- The atomic proposition is a type of statement, which contains a truth value
that can be true or false.
SetsA set S of sets is a partition of a set T if every element of T is exactly one
of the elements of S.
Equivalence Relations and Partial OrdersAn equivalence relation
must be reflexive, symmetric, and transitive.
A Partial Order must be reflexive, anti-symmetric, and transitive.

Final Questions
Properties of set Difference
Question Prove
1. S − T = S∩ ∼ T 2. S − T ⊆ S
3. S − ∅ = S 4. S ∩ (T − S) = ∅
5. S ∪ (T − S) = S ∪ T 6. S − (T ∪ U) = (S − T ) ∩ (S − U)
7. S − (T ∩ U) = (S − T ) ∪ (S − U)
Answers
1. S − T ≡ {∀x | x ∈ S ∧ x /∈ T} by (11.22), Axiom of Difference. Then

≡ {x | x ∈ S ∧ x ∈∼ T} by (11.18). Then ≡ S∩ ∼ T by (11.21), Axiom of
Intersection.

2. Let x ∈ S − T be arbitrary. Then x ∈ S ∧ s /∈ T by (11.22), Axiom of
Difference. Then x ∈ S. Thus by (11.13), Axiom of Subset, S − T ⊆ S.

3. S − ∅ ≡ {∀x | x ∈ S ∧ x /∈ ∅} by (11.22), Axiom of Difference. Then
≡ {x | x ∈ S ∧ x ∈∼ ∅} by (11.18). Then
≡ {x | x ∈ S ∧ x ∈ U} ≡ {x | x ∈ S} ≡ S by (11.17), Axiom of Complement.
Thus S − ∅ = S.

4. S ∩ (T − S) ≡ S ∩ (T∩ ∼ S) by (11.49). Then, ≡ (S∩ ∼ S) ∩ T ≡ ∅ ∩ T by
(11.39), Contradiction, and ≡ ∅, by (11.36), Zero of ∩.

5. Since T − S = T∩ ∼ S, then S ∪ (T − S) ≡ S ∪ (T∩ ∼ S). Consider
s ∨ (t ∧ ¬s). We have s ∨ (t ∧ ¬s) ≡ (s ∨ t) ∧ (s ∨ ¬s) ≡ s ∨ t, so the result
follows from Methatheorem (11.25).

6. S − (T ∪ U) ≡ S∩ ∼ (T ∪ U) by (11.49). Now consider s ∧ ¬(t ∨ u). We have
≡ s ∧ (¬t ∨ ¬u) by De Morgan’s Law. Then ≡ s ∧ ¬t ∨ s ∧ ¬u by
distributivity, so from Methatheorem (11.25), we have
S∩ ∼ (T ∪ U) ≡ (S∩ ∼ T ) ∩ (S∩ ∼ U), so from (11.49), we have
S − (T ∪ U) ≡ (S − T ) ∩ (S − U).

7. Same thing as (6.).

Assignment 3, Question 11
Question Prove the correctness of the following loop, assigning to Fn the nth
fibonacci number:

{Q : n ≥ 0} k, b, c := 0, 1, 0;

{invariant P : 0 ≤ k ≤ n ∧ b = Fk−1 ∧ c = Fk}

do k ̸= n → k, b, c := k + 1, c, b + c; od

{R : c = Fn}

Solution Prove P is true before execution of the loop.

P [k, b, c := 0, 1, 0]

≡ 0 ≤ 0 ≤ n ∧ 1 = F0−1 ∧ 0 = F0 (Textual Substitution)

≡ 0 ≤ n ∧ 1 = F−1 ∧ 0 = F0 ≡ 0 ≤ n

Prove P is a loop invariant.

P [k, b, c := k + 1, c, b + c]

≡ 0 ≤ k + 1 ≤ n ∧ c = Fk+1−1 ∧ b + c = Fk+1 (Textual Substitution)

≡ −1 ≤ k ≤ n − 1 ∧ c = Fk ∧ b + c = Fk+1

≡ k ̸= n ∧ −1 ≤ k ≤ n − 1 ∧ c = Fk ∧ b = Fk+1 − Fk (k ≤ n − 1 ⇒ k ̸= n)

⇐ k ̸= n ∧ 0 ≤ k ≤ n ∧ c = Fk ∧ b = Fk+1 − Fk (Strengthening)

≡ k ̸= n ∧ 0 ≤ k ≤ n ∧ c = Fk ∧ b = Fk−1 (Fibonacci)

≡ P ∧ B (Def. of P ∧ B)

Prove execution of the loop terminates.
The value of n − k is always at least 0 and it decreases by 1 each iteration; hence,
n − k becomes 0 such that the condition is false and the loop terminates.
Prove R holds upon termination.

P ∧ ¬B

≡ 0 ≤ k ≤ n ∧ b = Fk−1 ∧ c = Fk ∧ k = n

⇒ c = Fk ∧ k = n (Weakening)

≡ c = Fn (Leibniz substitution)

Prove Axiom 9.10 and 9.11
Prove Axiom 9.10(∀x | Q ∨ R : P ) ≡ (∀x | Q : P ) ∧ (∀x | R : P ) by (8.18)
Idempotent Range Split. ⇒ (∀x | Q : P ) by Weakening.
Prove Axiom 9.11(∀x | R : P ∧ Q) ≡ (∀x | R : P ) ∧ (∀x | R : Q) by (8.15),
Distributivity. ⇒ (∀x | R : P ) by Weakening.

Lecture 15, Symmetric Difference
Question Let R be a non-empty binary relation on B. Define the relations Rac,
≺1 and ≺2 on B as follows:

1. bRacc ⇔ bRc ∧ ¬(cR+b) for all b, c ∈ B, i.e. Rac is R after removing all
cycles.

2. b ≺1 c ⇔ bR+c ∧ ¬(cR+b) for all b, c ∈ B, i.e.

≺1= R+ ∩ (∼ R+) = R+ ∩ (B × B \ R+).
3. b ≺2 c ⇔ bRacc
Prove that ≺1 and ≺2 are sharp partial orders and ≺2⊆≺1.
Answers Prove 1.: ≺1 is a sharp partial order

• bR+b ∧ ¬(bR+b) ≡ false so ≺1 is irreflexive.
• To prove transitivity, consider b ≺1 c ≺1 d ⇒

(bR+c ∧ ¬(cR+b)) ∧ (cR+d ∧ ¬(dR+c)) ⇒ bR+c ∧ cR+d ≡ c ≺1 d.

• To show ¬(dR+b), assume dR+b. We already have bR+c and

dr+b ∧ bR+c ⇒ dR+bR+c ⇒ d(R+ ◦ R+)c ⇒ dR+c, a contradictoin, as

c ≺1 d ⇒ ¬(dR+c). Thus ¬(dR+b) must be true.
• Thus ≺1 is transitive, thus it’s a sharp partial order.

Prove 2.: ≺2 is a sharp partial order
• ≺2 is transitive because it is a transitive closure of Rac, so only need to prove

it is irreflexive.
• ¬cR+b means that ¬cRib for all i ≥ 1, which means Rac is irreflexive.

• Suppose b ≺2 b for some b ∈ B. This means b(Rac)jb for some j ≥ 1. Since

Rac is irreflexive, j > 1, i.e. b(Rac)j−1cRacb. Since Rac is irreflexive, c ̸= b.

But cRacb ⇒ ¬bR+c ⇒ ∀(i |: ¬bRic) ⇒ ¬bRj−1c ⇒ ¬b(Rac)j−1c, a
contradiction, ≺2 is irreflexive.

• Thus ≺2 is a sharp partial order.
Prove ≺2⊆≺1

• b ≺1 c ⇔ bR+c ∧ (¬cR+b) for all b, c ∈ B.

• b ≺2 c ⇔ b(Rac)+c where bRacc ⇔ bRc ∧ ¬(cR+b)

• We will use the result: if Q is transitive then Q+ = Q (we will prove it later).

• bRacc ⇔ bRc ∧ ¬(cR+b) ⇐ bR+c ∧ ¬(cR+b) ⇔ b ≺1 c, so Rac ⊆≺1.

• Rac ⊆≺1⇒ (Rac)+ ⊆ (≺1)+ =≺1

• Hence ≺2= (Rac)+ ⊆≺1.

Lecture 15, Prove Binary Relation by Induction
LetR be a transitive relation on B. Prove R+ = R.
• Recall R+ =

⋃
i≥1 Ri, or bR+c ≡ ∃(i |: i > 0 ∧ bRic).

• From the definition of R+, we have R ⊆ R+.

• We now show R+ ⊆ R. By the definition of R+, it suffices to show

(∀i | 0 < i : Ri ⊆ R) by induction.
• Base case: R ⊆ R.

• Inductive Step: Assume Ri ⊆ R, i.e., bRic ⇒ bRc.
• Consider

bRi+1c ⇔ ∃(d | d ∈ B : bRid ∧ dRc) ⇐ ∃(d | d ∈ B : bRd ∧ dRc) ⇒ bRc. The

last step is by transitivity of R. Hence Ri ⊆ R.

• This means R+ = R.
Assignment 3, Question 19
Question Show that (S, ◦, 1) is a group if ◦ is a binary associative operator with
a left identity 1 and every element has a left inverse.
Answer Prove left cancellation

• We first prove left cancellation, d ◦ b = d ◦ c ≡ b = c.
– LHS ⇐ RHS follows from Leibniz.
– LHS ⇒ RHS: b = d−1 ◦ d ◦ b = d−1 ◦ d ◦ c by assumption, so now by

identity we have = c.
• Prove left idenity is also a right identity:

1 = 1 ≡ 1 ◦ 1 = 1 ≡ b−1 ◦ b ◦ 1 = b−1 ◦ b ≡ b ◦ 1 = b by left cancelation.
• Since 1 is both left and right identity, it is the unique identity by Theorem

(18.2). We now must show that every element has an inverse.
• By assumption, a left inverse exists, so show it is a right inverse.

• Let b−1 be the left inverse of b. Then,

b−1 = b−1 ≡ 1 ◦ b−1 = b−1 ◦ 1 ≡ b−1 ◦ b ◦ b−1 = b−1 ◦ 1 ≡ b ◦ b−1 = 1.
• Thus we have that there is an inverse.

Prove Boolean Algebra
Question Let (S,⊕,⊗,∼, 0, 1) be a boolean algebra. Prove that for all b, c,∈ S,
we have b ⊕ c = 1 ∧ c ⊗ b = 0 ⇔ c =∼ b.
• (⇐): from Section Boolean Algebra d), b ⊕ (∼ b) = 1 and b ⊗ (∼ b) = 0.
• (⇒): We will start from c =∼ b and work backwards.
• c =∼ b ⇔ c ⊗ 1 =∼ b ⊗ 1 ⇐ c ⊗ (b ⊕ (∼ b)) =∼ b ⊗ (b ⊕ c) ⇔ (c ⊗ b) ⊕ (c ⊗ (∼

b)) = 0 ⊕ (∼ b ⊗ c) ⇔ c ⊗ (∼ b) = (∼ b) ⊗ c which is true by symmetry.
• Reverse the steps to get the proper proof.

Closures R+ =
⋃∞
i=1 aRic (transitive); R∗ = R+ ∪ iB (reflexive transitive)

18.51 Absorption
b ⊕ (b ⊗ c) = (b ⊗ 1) ⊕ (b ⊗ c) = b ⊗ (1 ⊕ c) = b ⊗ 1 < zero >= b

Cancellation
Prove b ⊕ c = b ⊕ d ∧ (∼ b ⊕ c =∼ b ⊕ d) ≡ c = d.
• (⇒): b ⊕ c = b ⊕ d ∧ (∼ b ⊕ c =∼ b ⊕ d) < Leibniz c := d >≡ b ⊕ d =

b ⊕ d ∧ (∼ b ⊕ d =∼ b ⊕ d) ≡ true ∧ true ≡ true
• (⇐):

– c = d < Leibniz >≡ b ⊕ c = b ⊕ d
– c = d < Leibniz >≡∼ b ⊕ c =∼ b ⊕ d
Thus b ⊕ c = b ⊕ d ∧ (∼ b ⊕ c =∼ b ⊕ d).
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