

Theorems

Negation, inequivalence, and false

(3.11)	$\neg p \equiv q \equiv p \equiv \neg q$
(3.14)	$(p \not\equiv q) \equiv \neg p \equiv q$
(3.15)	$(\neg p \equiv p \equiv \text{false})$
(3.18)	Mutual Associativity $((p \not\equiv q) \equiv r) \equiv (p \not\equiv (q \equiv r))$
(3.19)	Mutual interchangeability $p \not\equiv q \equiv r \equiv p \equiv q \not\equiv r$

Disjunction

(3.27)	Axiom, Distributivity of \vee over \equiv	$p \vee (q \equiv r) \equiv p \vee q \equiv p \vee r$
(3.28)	Axiom, Excluded Middle	$p \vee \neg p$
(3.31)	Distributivity of \vee over \vee	$p \vee (q \vee r) \equiv (p \vee q) \vee (p \vee r)$
(3.32)		$p \vee q \equiv p \vee \neg q \equiv p$

Conjunction

(3.35)	Axiom, Golden rule	$p \wedge q \equiv p \equiv p \vee q$
(3.41)	Distributivity of \wedge over \wedge	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge (p \wedge r)$
(3.43)	Absorption	(a) $p \wedge (p \vee q) \equiv p$ (b) $p \vee (p \wedge q) \equiv p$
(3.44)	Absorption	(a) $p \wedge (\neg p \vee q) \equiv p \wedge q$ (b) $p \vee (\neg p \wedge q) \equiv p \vee q$
(3.47)	De Morgan	(a) $\neg(p \wedge q) \equiv \neg p \vee \neg q$ (b) $\neg(p \vee q) \equiv \neg p \wedge \neg q$
(3.48)		$p \wedge q \equiv p \wedge \neg q \equiv \neg p$
(3.49)		$p \wedge (q \equiv r) \equiv p \wedge q \equiv p \wedge r \equiv p$
(3.50)		$p \wedge (q \equiv p) \equiv p \wedge q$
(3.51)	Replacement	$(p \equiv q) \wedge (r \equiv p) \equiv (p \equiv q) \vee (r \equiv q)$
(3.52)	Definition of \equiv	$p \equiv q \equiv (p \wedge q) \vee (\neg p \wedge \neg q)$
(3.53)	Exclusive or	$p \not\equiv q \equiv (\neg p \wedge q) \vee (p \wedge \neg q)$
(3.55)		$(p \wedge q) \wedge r \equiv p \equiv q \equiv r \equiv p \vee q \equiv p \vee q \vee r$

Implication

(3.57)	Axiom, Def of \Rightarrow	$p \Rightarrow q \equiv p \vee q \equiv q$
(3.59)		$p \Rightarrow q \equiv \neg p \vee q$
(3.60)		$p \Rightarrow q \equiv p \wedge q \equiv p$
(3.61)	Contrapositive	$p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
(3.62)		$p \Rightarrow (q \equiv r) \equiv p \wedge q \equiv p \Rightarrow r$
(3.63)	Distr. of \Rightarrow over \equiv	$p \Rightarrow (q \equiv r) \equiv p \Rightarrow q \equiv p \Rightarrow r$
(3.64)		$p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$
(3.65)	Shunting	$p \wedge (p \Rightarrow q) \Rightarrow p \Rightarrow (q \Rightarrow r)$
(3.66)		$p \wedge (p \Rightarrow q) \equiv p \wedge q$
(3.67)		$p \wedge (q \Rightarrow p) \equiv p$
(3.68)		$p \vee (q \Rightarrow p) \equiv \text{true}$
(3.69)		$p \vee (q \Rightarrow p) \equiv q \Rightarrow p$
(3.70)		$p \vee q \Rightarrow p \wedge q \equiv p \wedge q$
(3.71)	Reflexivity of \Rightarrow	$p \Rightarrow p \equiv \text{true}$
(3.72)	Right zero of \Rightarrow	$p \Rightarrow \text{true} \equiv \text{true}$
(3.73)	Left identity of \Rightarrow	$\text{true} \Rightarrow p \equiv p$
(3.74)		$p \Rightarrow \text{false} \equiv \neg p$
(3.75)		$\text{false} \Rightarrow p \equiv \text{true}$
(3.76)	Weakening/strengthening	(a) $p \Rightarrow p \wedge q$ (b) $p \wedge q \Rightarrow p$ (c) $p \wedge q \Rightarrow p \vee q$ (d) $p \vee (q \wedge r) \Rightarrow p \vee q$ (e) $p \wedge q \Rightarrow p \wedge (q \vee r)$
(3.77)	Modus ponens	$p \wedge (p \Rightarrow q) \Rightarrow q$
(3.78)		$(p \Rightarrow r) \wedge (q \Rightarrow r) \equiv (p \vee q \Rightarrow r)$
(3.79)		$(p \Rightarrow r) \wedge (\neg p \Rightarrow r) \equiv r$
(3.80)	Mutual implication	$(p \Rightarrow q) \wedge (q \Rightarrow p) \equiv (p \equiv q)$
(3.81)	Antisymmetry	$(p \Rightarrow q) \wedge (q \Rightarrow p) \Rightarrow (p \equiv q)$
(3.82)	Transitivity	(a) $(p \Rightarrow q) \wedge (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ (b) $(p \equiv q) \wedge (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ (c) $(p \Rightarrow q) \wedge (q \equiv r) \Rightarrow (p \Rightarrow r)$

General Laws of Quantification

For symmetric and associative binary operator \star with identity u .

(8.13)	Axiom, Empty range: $(\exists x \text{false} : P) = u$
(8.14)	Axiom, One-point rule: Provided $\neg\text{occurs}(\text{'x}', 'E')$, $(\exists x E = P) = P[x := E]$
(8.15)	Axiom, Distributivity: Provided each quantification is defined, $(\exists x R : P) \star (\exists x R : Q) = (\exists x R : P \wedge Q)$
(8.16)	Axiom, Range split: Provided $R \wedge S \equiv \text{false}$ and each quantification is defined, $(\exists x R \vee S : P) = (\exists x R \wedge S : P) = (\exists x R : P) \star (\exists x S : P)$
(8.17)	Axiom, Range split: Provided each quantification is defined, $(\exists x R \vee S : P) \star (\exists x R \wedge S : P) = (\exists x R : P) \star (\exists x S : P)$
(8.18)	Axiom, Range split for idempotent \star : Prov. each quant. is defined, $(\exists x R \vee S : P) = (\exists x R : P) \star (\exists x S : P)$
(8.19)	Axiom, Interchange of dummies: Provided each quantification is defined, $\neg\text{occurs}(\text{'y}', 'R')$, and $\neg\text{occurs}(\text{'x}', 'Q')$, $(\exists x R : (\exists y Q : P)) = (\exists y R : (\exists x P : P))$
(8.20)	Axiom, Nesting: Provided $\neg\text{occurs}(\text{'y}', 'R')$, $(\exists x,y R \wedge Q : P) = (\exists x R : (\exists y Q : P))$
(8.21)	Axiom, Dummy renaming: Provided $\neg\text{occurs}(\text{'y}', 'R, P')$, $(\exists x R : P) = (\exists y R[x := y] : P[x := y])$
(8.22)	Change of dummy: Provided $\neg\text{occurs}(\text{'y}', 'R, P')$, and f has an inverse, $(\exists x R : P) = (\exists y R[x := f(y)] : P[x := f(y)])$
(8.23)	Split off term: $(\star i 0 \leq i < n + 1 : P) = (\star i 0 \leq i < n : P) \star P_n^i$

Theorems of the Predicate Calculus

Universal quantification

(9.2)	Axiom, Trading:	$(\forall x R : P) \equiv (\forall x : R \Rightarrow P)$
(9.3)	Trading:	(a) $(\forall x R : P) \equiv (\forall x : \neg R \vee P)$ (b) $(\forall x R : P) \equiv (\forall x : R \wedge P \equiv R)$ (c) $(\forall x R : P) \equiv (\forall x : R \vee P \equiv R)$ (d) $(\forall x R : P) \equiv (\forall x Q : R \wedge P \equiv R)$ (e) $(\forall x R : P) \equiv (\forall x Q : \neg R \vee P)$ (f) $(\forall x R : P) \equiv (\forall x Q : R \wedge P \equiv R)$ (g) $(\forall x R : P) \equiv (\forall x Q : R \vee P \equiv R)$
(9.4)	Trading:	(h) $(\forall x R : P) \equiv (\forall x Q : R \wedge P \equiv R)$ (i) $(\forall x R : P) \equiv (\forall x Q : R \vee P \equiv R)$ (j) $(\forall x R : P) \equiv (\forall x Q : \neg R \vee P)$ (k) $(\forall x R : P) \equiv (\forall x Q : R \wedge P \equiv R)$ (l) $(\forall x R : P) \equiv (\forall x Q : R \vee P \equiv R)$
(9.5)	Axiom, Distributivity of \vee over \forall :	Provid. $\neg\text{occurs}(\text{'x}', 'P')$, $P \vee (\forall x R : Q) \equiv (\forall x R : P \vee Q)$
(9.6)		Provided $\neg\text{occurs}(\text{'x}', 'P')$, $P \vee (\forall x R : Q) \equiv (\forall x R : P \vee Q)$

Distributivity of \wedge over \forall :

(9.7)	Distributivity of \wedge over \forall :	Provided $\neg\text{occurs}(\text{'x}', 'P')$, $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$
(9.8)		Provided $\neg\text{occurs}(\text{'x}', 'P')$, $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$
(9.9)		Provided $\neg\text{occurs}(\text{'x}', 'P')$, $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$
(9.10)	Range weakening/strengthening:	(a) $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$ (b) $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$
(9.11)	Body weakening/strengthening:	(a) $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$ (b) $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$
(9.12)	Monotonicity of \forall :	(a) $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$ (b) $(\forall x R : P \wedge Q) \equiv P \wedge (\forall x R : Q)$
(9.13)	Instantiation:	(a) $(\forall x R : P) \Rightarrow P[x := e]$ (b) P is a theorem iff $(\forall x R : P)$ is a theorem.
(9.16)		(c) $(\forall x R : P) \Rightarrow P[x := e]$ (d) P is a theorem iff $(\forall x R : P)$ is a theorem.

Existential quantification

(9.17)	Axiom, Generalized De Morgan:	$(\exists x R : P) \equiv \neg(\forall x R : \neg P)$
(9.18)	Generalized De Morgan:	(a) $\neg(\exists x R : \neg P) \equiv (\forall x R : P)$ (b) $\neg(\exists x R : P) \equiv (\forall x R : \neg P)$ (c) $\neg(\exists x R : P) \equiv \neg(\forall x R : P)$ (d) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (e) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.19)	Trading:	(f) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (g) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.20)	Distributivity of \wedge over \exists :	(h) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (i) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.21)	Distributivity of \wedge over \exists :	(j) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (k) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.22)	Distributivity of \wedge over \exists :	(l) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (m) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.23)	Distributivity of \wedge over \exists :	(n) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (o) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.24)	Range weakening/strengthening:	(p) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (q) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.25)	Body weakening/strengthening:	(r) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (s) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.26)	Monotonicity of \exists :	(t) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (u) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.27)	Monotonicity of \exists :	(v) $\neg(\exists x R : P) \equiv (\exists x R : \neg P)$ (w) $\neg(\exists x R : P) \equiv (\exists x R : P \wedge \neg P)$
(9.28)	\exists -Introduction:	(x) $P[x := E] \Rightarrow (\exists x R : P)$ (y) $\neg\text{occurs}(\text{'y}', 'P')$ and $\neg\text{occurs}(\text{'x}', 'Q')$
(9.29)	Interchange of quantifications:	(z) $(\exists x R : (y Q : P)) \Rightarrow (\forall y Q : (\exists x R : P))$ (a) $\neg\text{occurs}(\text{'x}', 'Q')$, $(\exists x R : P) \Rightarrow Q$ is a theorem iff $(R \wedge P)[x := \bar{x}] \Rightarrow Q$ is a theorem
(9.30)		(b) $\neg\text{occurs}(\text{'y}', 'P')$, $(\exists x R : P) \Rightarrow Q$ is a theorem iff $(R \wedge P)[x := \bar{x}] \Rightarrow Q$ is a theorem

Conditional Statements

(10.5) Proof method for IF: To prove $\{Q\}IF\{R\}$, prove $\{Q \wedge B\}S1\{R\}$ and $\{Q \wedge \neg B\}S2\{R\}$

Given $\{?\}S\{R\}$. To find ? textual sub S into R

Set Theory

(11.3)	Axiom, Set membership:	Provided $\neg\text{occurs}(\text{'x}', 'F')$, $F \in E$ $x \mid R : E \equiv (\exists x : R : F = E)$ $S = T \equiv (\forall x : x \in S \equiv x \in T)$
(11.4)	Axiom, Extensionality:	(a) $S = T \equiv (\forall x : x \in S \equiv x \in T)$ (b) $S = T \equiv (\forall x : x \in S : x : x \in T)$
(11.5)		(c) $S = \{x \mid x \in S : x\}$ (d) $\{x \mid R : E\} = \{y \mid (\exists x R : y = E)\}$
(11.6)		(e) $\{x \mid R : E\} = \{y \mid (\exists x R : y = E)\}$
(11.7)	Axiom, Subset:	(f) $x \in S \equiv \exists x \in S : x \in T$
(11.9)	Axiom, Proper subset:	(g) $x \in S \equiv \exists x \in T : x \not\in S$
(11.10)	Axiom, Complement:	(h) $\{x \mid Q\} = \{x \mid R\} \equiv (\forall x : Q \equiv R)$
(11.12)	Axiom, Size:	(i) $\#S = (\sum x \mid x \in S : 1)$
(11.13)	Axiom, Subset:	(j) $S \subseteq T \equiv (\forall x \mid x \in S \in T : x \in T)$
(11.14)	Axiom, Proper subset:	(k) $S \subseteq T \equiv S \subseteq T \wedge S \neq T$
(11.17)	Axiom, Complement:	(l) $v \in S \equiv \exists v \in U : v \in U \wedge v \not\in S$
(11.18)		(m) $v \in S \equiv \exists v \in U : v \not\in S$ (for v in U)
(11.19)	Axiom, Union:	(n) $\sim S = S$
(11.20)	Axiom, Intersection:	(o) $v \in S \cup T \equiv v \in S \vee v \in T$
(11.21)	Axiom, Difference:	(p) $v \in S \cap T \equiv v \in S \wedge v \not\in T$
(11.22)	Axiom, Power set:	(q) $v \in S - T \equiv v \in S \wedge v \not\in T$
(11.23)	Definition: For E_S , a set expression, E_P , a predicate expression, E_F , a set expression, E_S and F_S	(r) $\emptyset \neq \text{false} \Rightarrow F_S \equiv \text{true}$
(11.24)		(s) $\emptyset \neq \text{true} \Rightarrow F_S \equiv \text{true}$
(11.25)	Metatheorem: For any set expressions E_S and F_S	(t) $E_S = F_S \Leftrightarrow E_P \equiv F_P, E_S \subseteq F_S \Leftrightarrow E_P \equiv F_P, E_S = U \Leftrightarrow E_P \equiv \text{true}$

Properties of \cup

(11.26)	Symmetry of \cup :	$S \cup T = T \cup S$
(11.27)	Associativity of \cup :	$(S \cup T) \cup U = S \cup (T \cup U)$
(11.28)	Idempotency of \cup :	$S \cup S = S$
(11.29)	Zero of \cup :	$S \cup \emptyset = S$
(11.30)	Identity of \cup :	$S \cup \emptyset = S$
(11.31)	Weakening:	$S \subseteq S \cup T$
(11.32)	Excluded middle:	$S \cup \neg S = U$

Properties of \cap

(11.33)	Symmetry of \cap :	$S \cap T = T \cap S$
(11.34)</		

