
2LC3 - Jason Huang

Theorems
Equivalence and true
(3.1) Axiom, Associativity of ≡ ((p ≡ q) ≡ r) ≡ (p ≡ (q ≡ r))
(3.2) Axiom, Symmetry of ≡ p ≡ q ≡ q ≡ p
(3.3) Axiom, Identity of ≡ true ≡ q ≡ q
(3.4) true
(3.5) Reflexivity of ≡ p ≡ p

Negation, inequivalence, and false
(3.8) Axiom, Definition of false false ≡ ¬true
(3.9) Axiom, Distributivity of ¬ over ≡ ¬(p ≡ q) ≡ ¬ ≡ q
(3.10) Axiom, Definition of ̸≡ (p ̸≡ q) ≡ ¬(p ≡ q)
(3.11) ¬p ≡ q ≡ p ≡ ¬q
(3.12) Double negation ¬¬p ≡ p
(3.13) Negation of false ¬false ≡ true
(3.14) (p ̸≡ q) ≡ ¬p ≡ q
(3.15) (¬p ≡ p ≡ false)
(3.16) Symmetry of ̸≡ (p ̸≡ q) ≡ (q ̸≡ p)
(3.17) Associativity of ̸≡ ((p ̸≡ q) ̸≡ r) ≡ (p ̸≡ (q ̸≡ r))
(3.18) Mutual Associativity ((p ̸≡ q) ≡ r) ≡ (p ̸≡ (q ≡ r))
(3.19) Mutual interchangeability p ̸≡ q ≡ r ≡ p ≡ q ̸≡ r

Disjunction
(3.24) Axiom, Symmetry of ∨ p ∨ q ≡ q ∨ p
(3.25) Axiom, Associativity of ∨ (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(3.26) Axiom, Idempotency of ∨ p ∨ p ≡ p
(3.27) Axiom, Distributivity of ∨ over ≡ p ∨ (q ≡ r) ≡ p ∨ q ≡ p ∨ r
(3.28) Axiom, Excluded Middle p ∨ ¬p
(3.29) Zero of ∨ p ∨ true ≡ true
(3.30) Identity of ∨ p ∨ false ≡ p
(3.31) Distributivity of ∨ over ∨ p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)
(3.32) p ∨ q ≡ p ∨ ¬q ≡ p

Conjunction
(3.35) Axiom, Golden rule p ∧ q ≡ p ≡ q ≡ p ∨ q
(3.36) Symmetry of ∧ p ∧ q ≡ q ∧ p
(3.37) Associativity of ∧ (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(3.38) Idempotency of ∧ p ∧ p ≡ p
(3.39) Identity of ∧ p ∧ true ≡ p
(3.40) Zero of ∧ p ∧ false ≡ false
(3.41) Distributivity of ∧ over ∧ p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
(3.42) Contradiction p ∧ ¬p ≡ false
(3.43) Absorption (a) p ∧ (p ∨ q) ≡ p

(b) p ∨ (p ∧ q) ≡ p
(3.44) Absorption (a) p ∧ (¬p ∨ q) ≡ p ∧ q

(b) p ∨ (¬p ∧ q) ≡ p ∨ q
(3.45) Distributivity of ∨ over ∧ p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
(3.46) Distributivity of ∧ over ∨ p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
(3.47) De Morgan (a) ¬(p ∧ q) ≡ ¬p ∨ ¬q)

(b) ¬(p ∨ q) ≡ ¬p ∧ ¬q)
(3.48) p ∧ q ≡ p ∧ ¬q ≡ ¬p
(3.49) p ∧ (q ≡ r) ≡ p ∧ q ≡ p ∧ r ≡ p
(3.50) p ∧ (q ≡ p) ≡ p ∧ q
(3.51) Replacement (p ≡ q) ∧ (r ≡ p) ≡ (p ≡ q) ∨ (r ≡ q)
(3.52) Definition of ≡ p ≡ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)
(3.53) Exclusive or p ̸≡ q ≡ (¬p ∧ q) ∨ (p ∧ ¬q)
(3.55) (p ∧ q) ∧ r ≡ p ≡ q ≡ r

≡ p ∨ q ≡ q ∨ r ≡ r ∨ p ≡ p ∨ q ∨ r

Implication
(3.57) Axiom, Definition of Implication p ⇒ q ≡ p ∨ q ≡ q
(3.58) Axiom, Consequence p ⇐ q ≡ q ⇒ p
(3.59) Definition of implication p ⇒ q ≡ ¬p ∨ q
(3.60) Definition of implication p ⇒ q ≡ p ∧ q ≡ p
(3.61) Contrapositive p ⇒ q ≡ ¬q ⇒ ¬p
(3.62) p ⇒ (q ≡ r) ≡ p ∧ q ≡ p ∧ r
(3.63) Distributivity of ⇒ over ≡ p ⇒ (q ≡ r) ≡ p ⇒ q ≡ p ⇒ r
(3.64) p ⇒ (q ⇒ r) ≡ (p ⇒ q) ⇒ (p ⇒ r)
(3.65) Shunting p ∧ q ⇒ r ≡ p ⇒ (q ⇒ r)
(3.66) p ∧ (p ⇒ q) ≡ p ∧ q
(3.67) p ∧ (q ⇒ p) ≡ p
(3.68) p ∨ (p ⇒ q) ≡ true
(3.69) p ∨ (q ⇒ p) ≡ q ⇒ p
(3.70) p ∨ q ⇒ p ∧ q ≡ p ≡ q
(3.71) Reflexivity of ⇒ p ⇒ p ≡ true
(3.72) Right zero of ⇒ p ⇒ true ≡ true
(3.73) Left identity of ⇒ true ⇒ p ≡ p
(3.74) p ⇒ false ≡ ¬p
(3.75) false ⇒ p ≡ true
(3.76) Weakening/strengthening (a) p ⇒ p ∨ q

(b) p ∧ q ⇒ p
(c) p ∧ q ⇒ p ∨ q
(d) p ∨ (q ∧ r) ⇒ p ∨ q
(e) p ∧ q ⇒ p ∧ (q ∨ r)

(3.77) Modus ponens p ∧ (p ⇒ q) ⇒ q
(3.78) (p ⇒ r) ∧ (q ⇒ r) ≡ (p ∨ q ⇒ r)
(3.79) (p ⇒ r) ∧ (¬p ⇒ r) ≡ r
(3.80) Mutual implication (p ⇒ q) ∧ (q ⇒ p) ≡ (p ≡ q)
(3.81) Antisymmetry (p ⇒ q) ∧ (q ⇒ p) ⇒ (p ≡ q)
(3.82) Transitivity (a) (p ⇒ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)

(b) (p ≡ q) ∧ (q ⇒ r) ⇒ (p ⇒ r)
(c) (p ⇒ q) ∧ (q ≡ r) ⇒ (p ⇒ r)

Leibniz as an axiom

(3.83) Axiom, Leibniz e = f ⇒ Ez
e = Ez

f
(3.84) Substitution (a) (e = f) ∧ Ez

e ≡ (e = f) ∧ Ez
f

(b) (e = f) ⇒ Ez
e ≡ (e = f) ⇒ Ez

f
(c) q ∧ (e = f) ⇒ Ez

e ≡ q ∧ (e = f) ⇒ Ez
f

(3.85) Replace by true (a) p ⇒ Ez
b ≡ p ⇒ Ez

true
(b) q ∧ p ⇒ Ez

p ≡ q ∧ p ⇒ Ez
true

(3.86) Replace by false (a) Ez
p ⇒ p ≡ Ez

false ⇒ p

(b) Ez
p ⇒ p ∨ q ≡ Ez

false ⇒ p ∨ q

(3.87) Replace by true p ∧ Ez
p ≡ p ∧ Ez

true
(3.88) Replace by false p ∨ Ez

p ≡ p ∨ Ez
false

(3.89) Shannon Ez
p ≡ (p ∧ Ez

true) ∨ (¬p ∧ Ez
false)

(4.1) p ⇒ (q ⇒ p)
(4.2) Monotonicity of ∨ (p ⇒ q) ⇒ (p ∨ r ⇒ q ∨ r)
(4.3) Monotonicity of ∧ (p ⇒ q) ⇒ (p ∧ r ⇒ q ∧ r)

Proof techniques

(4.4) Deduction To prove P ⇒ Q, assume P and prove Q.
(4.5) Case analysis If Ez

true, Ez
false are theorems, then so is Ez

P .

(4.6) Case analysis (p∨q∨r)∧ (p ⇒ s)∧ (q ⇒ s)∧ (r ⇒ s) ⇒ s
(4.7) Mutual implication To prove P ≡ Q, prove P ⇒ Q and Q ⇒ P .
(4.9) Proof by contradiction To prove P , prove ¬P ⇒ false.
(4.12) Proof by contrapositive To prove P ⇒ Q, prove ¬Q ⇒ ¬P

General Laws of Quantification

For symmetric and associative binary operator ⋆ with identity u.
(8.13) Axiom, Empty range: (⋆x|false : P) = u
(8.14) Axiom, One-point rule: Provided ¬occurs(‘x’, ‘E’),

(⋆x|x = E : P) = P [x := E]
(8.15) Axiom, Distributivity: Provided each quantification is defined,

(⋆x|R : P) ⋆ (⋆x|R : Q) = (⋆x|R : P ⋆ Q)
(8.16) Axiom, Range split: Provided R ∧ S ≡ false and each quantification

is defined, (⋆x|R ∨ S : P) = (⋆x|R ∧ S : P) = (⋆x|R : P) ⋆ (⋆X|S : P)
(8.17) Axiom, Range split: Provided each quantification is defined,

(⋆x|R ∨ S : P) ⋆ (⋆x|R ∧ S : P) = (⋆x|R : P) ⋆ (⋆x|S : P)
(8.18) Axiom, Range split for idempotent ⋆: Prov. each quant. is defined,

(⋆x|R ∨ S : P) = (⋆x|R : P) ⋆ (⋆x|S : P)
(8.19) Axiom, Interchange of dummies: Provided each quantification is

defined, ¬occurs(‘y’, ‘R’), and ¬occurs(‘x’, ‘Q’),
(⋆x|R : (⋆y|Q : P)) = (⋆y|Q : (⋆x|R : P))

(8.20) Axiom, Nesting: Provided ¬occurs(‘y’, ‘R’),
(⋆x, y|R ∧ Q : P) = (⋆x|R : (⋆y|Q : P))

(8.21) Axiom, Dummy renaming: Provided ¬occurs(‘y’, ‘R, P ’),
(⋆x|R : P) = (⋆y|R[x := y] : P [x := y])

(8.22) Change of dummy: Provided ¬occurs(‘y’, ‘R, P ’), and f has an
inverse, (⋆x|R : P) = (⋆y|R[x := f.y] : P [x := f.y])

(8.23) Split off term: (⋆i|0 ≤ i < n + 1 : P) = (⋆i|0 ≤ i < n : P) ⋆ Pi
n

Theorems of the Predicate Calculus

Universal quantification

(9.2) Axiom, Trading: (∀x|R : P) ≡ (∀x| : R ⇒ P)
(9.3) Trading: (a) (∀x|R : P) ≡ (∀x| : ¬R ∨ P)

(b) (∀x|R : P) ≡ (∀x| : R ∧ P ≡ R)
(c) (∀x|R : P) ≡ (∀x| : R ∨ P ≡ P)

(9.4) Trading: (a) (∀x|Q ∧ R : P) ≡ (∀x|Q : R ⇒ P)
(b) (∀x|Q ∧ R : P) ≡ (∀x|Q : ¬R ∨ P)
(c) (∀x|Q ∧ R : P) ≡ (∀x|Q : R ∧ P ≡ R)
(d) (∀x|Q ∧ R : P) ≡ (∀x|Q : R ∨ P ≡ P)

(9.5) Axiom,
Distributivity of ∨
over ∀:

Prov. ¬occurs(‘x’, ‘P ’),
P ∨ (∀x|R : Q) ≡ (∀x|R : P ∨ Q)

(9.6) Provided ¬occurs(‘x’, ‘P ’),
(∀x|R : P) ≡ P ∨ (∀x| : ¬R)

(9.7) Distributivity of ∧
over ∀:

Provided ¬occurs(‘x’, ‘P ’), ¬(∀x| : ¬R) ⇒
((∀x|R : P ∧ Q) ≡ P ∧ (∀x|R : Q))

(9.8) (∀x|R : true) ≡ true
(9.9) (∀x|R : P ≡ Q) ⇒ ((∀x|R : P) ≡ (∀x|R : Q))
(9.10) Range weaken-

ing/strengthening:
(∀x|Q ∨ R : P) ⇒ (∀x|Q : P)

(9.11) Body weaken-
ing/strengthening:

(∀x|R : P ∧ Q) ⇒ (∀x|R : P)

(9.12) Monotonicity of ∀: (∀x|R : Q ⇒ P) ⇒ ((∀x|R : Q) ⇒ (∀x|R :
P))

(9.13) Instantiation: (∀x| : P) ⇒ P [x := e]
(9.16) P is a theorem iff (∀x| : P) is a theorem.

Existential quantification
(9.17) Axiom,

Generalized De
Morgan:

(∃x|R : P) ≡ ¬(∀x|R : ¬P)

(9.18) Generalized De
Morgan:

(a) ¬(∃x|R : ¬P) ≡ (∀x|R : P)

(b) ¬(∃x|R : P) ≡ (∀x|R : ¬P)
(c) (∃x|R : ¬P) ≡ ¬(∀x|R : P)

(9.19) Trading: (∃x|R : P) ≡ (∃x| : R ∧ P)
(9.20) Trading: (∃|Q ∧ R : P) ≡ (∃x|Q : R ∧ P)
(9.21) Distributivity of

∧ over ∃:
Provided ¬occurs(‘x’, ‘P ’),
P ∧ (∃x|R : Q) ≡ (∃x|R : P ∧ Q)

(9.22) (∃x|R : false) ≡ false
(9.23) Distributivity of

∨ over ∃:
Provided ¬occurs(‘x’, ‘P ’),
(≡ x| : R) ⇒ ((≡ x|R : P ∨Q) ≡ P ∨ (∃x|R : Q))

(9.24) (∃x|R : false) ≡ false
(9.25) Range weaken-

ing/strengthening:
(∃x|R : P) ⇒ (∃x|Q ∨ R : P)

(9.26) Body weaken-
ing/strengthening:

(∃x|R : P) ⇒ (∃x|R : P ∨ Q)

(9.27) Monotonicity of
∃:

(∀x|R : Q ⇒ P) ⇒ ((∃x|R : Q) ⇒ (∃x|R : P))

(9.28) ∃-Introduction: P [x := E] ⇒ (∃x| : P)
(9.29) Interchange of

quantifications:
Provided ¬occurs(‘y’, ‘R’) and
¬occurs(‘x’, ‘Q’),
(∃x|R : (∀y|Q : P)) ⇒ (∀y|Q : (∃x|R : P))

(9.30) Provided ¬occurs(‘x̂’, ‘Q’),
(∃x|R : P) ⇒ Q is a theorem iff (R ∧ P)[x :=
x̂] ⇒ Q is a theorem

LN1

Inference rule:
P1, ..., Pk

C
, where Pi - premises or hypoth., C is concl.

Inference rule asserts that if the premises are theorems, then the conclusion is a
theorem.
Inference rule Substitution: E-expression, v - list of variables, F - list of

expressions.
E

E[v := F]
.

Laws: Reflexivity. x = x, Symmetry. (x = y) = (y = x), Transitivity
X = Y, Y = Z

X = Z
, Leibnitz

X = Y

E[z := X] = E[z := Y]
A precondition of a statement is an assertion about the program variables in a
state in which the statement may be executed. A postcondition is an assertion
about the states in which it may terminate.
Hoare Triple - a notation: {P}S{Q} Assignment := {R[x := E]}x := E{R}.

LN2
The dual PD of a boolean expression P is constructed by swapping: true and
false, ∧ and ∨, ≡ and ̸≡, ⇒ and ⇍, ⇐ and ⇏.

and, but becomes ∧
or becomes ∨
not becomes ¬
it is not the case that becomes ¬
if p then q becomes p ⇒ q
means becomes ≡
however becomes ∧
; becomes ∧

id ¬

F F F T T
T F T F T

∧
̸≡
̸= ∨ n

o
r

≡
= ⇐ ⇒ n

a
n
d

F F F F F F F F F F T T T T T T T T
F T F F F F T T T T F F F F T T T T
T F F F T T F F T T F F T T F F T T
T T F T F T F T F T F T F T F T F T

Definitions
Expression is satisfied in state s iff
evaluates to true in state s.
Expression is valid iff it is satisfied in
every state.
Valid expression is called a tautology
Expression is satisfiable iff there is a

state in which it is satisfied.
Expression is a contradiction iff it
evaluates to false in every state.
Two expressions are logically
equivalent iff they evaluate to same
truth value in every state.

LN3

Propositional Calculus = Axioms + Inference Rules, Inference Rules:
P

P [r := Q]
.

A theorem of our propositional calculus is either 1 an axiom, 2 the conclusion of
an inference rule whose premises are theorems, or 3 a boolean expression that,
using the inference rules, is proved equal to an axiom or a previously proved
theorem. Heuristic: Identify applicable theorems by matching the structure of
expressions or sub-expressions. The operators that appear in a boolean
expression and the shape of its sub-expressions can focus the choice of theorems
to be used in manipulating it. Principle: Structure proofs to avoid repeating the
same sub-expression on many lines.

LN4
See: Proof techniques

LN5
A formal logical system, or logic, is a set of rules defined in terms of a set of
symbols, a set of formulas constructed from the symbols, a set of distinguished
formulas called axioms, and a set of inference rules. The set of formulas is called
the language of the logic. The language is defined syntactically; there is no
notion of meaning or semantics in a logic per se. A formula is a theorem of the
logic, if it is one of the following: an axiom, can be generated from the axioms
and already proved theorems using the inference rules. A proof that a formula is
a theorem is an argument that shows how the inference rules are used to generate
the formula. A logic is consistent if at least one of its formulas is a theorem and
at least one is not; otherwise, the logic is inconsistent. Models: We give the
formulas a meaning with respect to this domain, 1 by defining which formulas are
true statements about the domain, 2 by defining which formulas are false
statements about the domain. An interpretation assigns meaning to the:
operators of a logic, constants of a logic and variables of a logic. Standard
interpretation of expressions of (a) propositional logic For an expression P
without variables, let eval(P) be the value of P. Let Q be any expression, and let
s be a state that gives values to all the variables of Q. Define Q(s) to be a copy of
Q in which all its variables are replaced by their corresponding values in state s.
Then function f given by f (Q) = eval(Q(s)) is an interpretation for Q.

Definitions
Let S be a set of interpretations for a logic and F be a formula of the logic. F is
satisfiable (under S) iff at least one interpretation of S maps F to true. F is
valid (under S) iff every interpretation in S maps F to true. An interpretation
is a model for a logic iff every theorem is mapped to true by the interpretation. A
logic is sound iff every theorem is valid. A logic is complete iff every valid
formula is a theorem. Soundness means that the theorems are true statements
about the domain of discourse, Completeness means that every valid formula
can be proved. A sound and complete logic allows exactly the valid formulas to
be proved. A boolean expression is satisfied in state s iff it evaluates to true in
state s. A boolean expression is valid iff it is satisfied in every state. A valid
boolean expression is called a tautology. A boolean expression is satisfiable iff
there is a state in which it is satisfied. The atomic proposition is a type of
statement, which contains a truth value that can be true or false.

Peano Arithmetic
Symbols: S, o, +, ·, <, = Formulas: φ
Axioms: The axioms of PA are: (1) ∀x(Sx ̸= 0)
(2) ∀x, y((Sx = Sy) −→ x = y)
(3) (φ[0] ∧ ∀x(φ[x] −→ φ[Sx])) −→ ∀x(φ[x]), for any formula φ in PA.
(4) ∀x(x + 0) = x (5) ∀x, y(x + Sy = S(x + y)) (6) ∀(x · 0 = 0)
(7) ∀x, y(x · Sy = (x · y) + x)
Natural Deduction is a version of Propositional Logic often better suited for
formal proofs. Logicians express this relationship between a theorem and the
formulas assumed for its proof as the sequent: A0, ..., An ⊢ Q or ⊢ Q, where L is
the name of the logic with axioms A0, ..., An. Symbol ⊢ is called the ”turnstile”,
and the Ai are called the premises of the sequent. The sequent A0, ..., A0 ⊢ Q is
read as Q is provable from A0, ..., An (The order of the Ai is immaterial.) The
sequent ⊢L Q is read as ”Q is provable in logic L” - i.e. using the axioms of L.

Constructive Propositional Logic
(1) A proof of p ∧ q is given by presenting a proof of p and a proof of q (2) A
proof of p ∨ q is given by presenting either a proof of p or a proof of q (3) A proof
of p −→ q is a procedure that permits us to transform a proof of p into a proof of
q. (4) The constant false, which is a contradiction, has no proof. (5) A proof of
¬p is a procedure that transforms any hypothetical proof of p into a proof of a
contradiction (p ⊢ false i.e., false is provable from p).
Rules for Constructive Natural Deduction:
Introduction rules:
——

∧ − I:
⊢ P,⊢ Q

⊢ P ∧ Q
∨ − Il:

⊢ P

⊢ P ∨ Q
∨ − Ir :

⊢ Q

⊢ P ∨ Q

−→ −I:
P1, ..., Pn ⊢ Q

⊢ P1 ∧ ... ∧ Pn → Q
false − I: (none)

——
Elimination Rules:
——

∧ − E
P ∧ Q

P
,
P ∧ Q

Q
∨ − E

P ∧ Q,P −→ R,Q −→ R

R
−→ −E

P, P −→ Q

Q

≡ −El

⊢ P ∧ Q

⊢ P
,∧ − Er

⊢ P ∧ Q

Q
∨ − E

⊢ P ∨ Q,P ⊢ R,Q ⊢ R

⊢ R

−→ −E :
⊢ P,⊢ P] −→ Q

⊢ Q
F − E

⊢ F

⊢ P
P ≡ Q denotes (P −→ Q) ∧ (Q −→ P) —— ¬P denotes P −→ F T denotes ¬F
¬¬p −→ p is NOT a theorem p −→ ¬¬p is a theorem
p ∨ ¬p is NOT a theorem ¬¬(p ∨ ¬p) is a theorem.
Theorem-Soundness: An inference rule is considered sound if a formula derived
using it is valid whenever the premises used in the inference are theorems.
Model-Soundness: An inference rule is considered sound if a formula derived
using it is valid whenever the premises used in the inference are valid.

LN6
In a textual substitution E[x := F], x and F must have the same type. a notion
of subtypes: for example, the natural numbers N are a subset of the integers Z,
so l : Z and l : N are both suitable declarations. a notion overloading: we need a
notion of subtypes, as well as a notion of overloading of both constants and
operators, so that the same constants and operators can be used in more than one
way. a notion of polymorphism: we also need a notion of polymorphism; as an
example function =: t × t −→ B is polymorphic because it is defined for any type
t.
Σn
i=1e is any expression. Σ(i|1 ≤ i < n : e) Linear notation

Let ∗ be any binary operator that satisfy:

Sym/Comm: b ∗ c = c ∗ b Assoc.: (b ∗ c) ∗ d = b ∗ (c ∗ d)
Id. u: u ∗ b = b = b ∗ u A set of values together with an operator ∗ that satisfy
the above is called an Abelian monoid.
The general form of a quantification over ∗ is exemplified by
∗(x : t1, y : t2|R : P) Variables x and y are distinct. They are called the bound
variables or dummies of the quantification. t1 and t2 are the types of dummies x
and y If t1 and t2 are the same type, we may write ∗(x, y : t1|R : P) R, a
boolean expression, is the range of the quantification R may refer to dummies x
and y. If the range is omitted, as in ∗(x, y : t1| : P) , then the range true is
meant. P, an expression, is the body of the quantification. P may refer to
dummies x and y. Expression ∗(x : X|R : P) denotes the application of operator
∗ to the values P for all x in X for which range R is true.
Free and Bound occurrences in a variable:
The occurrence of i in the expression i is free. Suppose an occurrence of i in
expression E is free. Then that same occurrence of i is free in (E), in function
application f(..., E, ...), and in ∗(x|E : F) and ∗(x|F : E) provided i is not one
of the dummies in list x.
Let an occurrence of i be free in an expression E. That occurrence of i is bound
(to dummy i) in the expression ∗x|E : F) and ∗(x|F : E) if i is one of the
dummies in list x. Suppose an occurrence of i is bound in expression E. Then it is
also bound (to the same dummy) in (E), in function application f (..., E,...) , and
in ∗(x|E : F) and ∗(x|F : E).

Textual Substitution
Provided ¬occurs(′y′,′ x, F ′), i.e. a dummy of list y will have to be replaced by
a fresh variable if that dummy occurs free in x or F.
∗(y|R : P)[x := F] = ∗(y|R[x := F] : P [x := F])
Assume that the operator ∗ is symmetric and associative and has an identity u.
Two additional inferences rules allow substitution of equals for equals in the
range and body of a quantification (Leibniz).

P = Q

∗(x|E[z := P] : S) = ∗(x|E[z := Q] : S)
R −→ P = Q

∗(x|R : E[z := P]) = ∗(x|R : E[z := Q])
Operation ∗ is idempotent iff x ∗ x = x for all x. Quantifiers ’∨’, ’∧’, ’∪’, ’∩’ are
idempotent, while ’+’ and ’·’ are not.

LN7
A predicate-calculus formula is a boolean expression in which some boolean
variables may have been replaced by: Predicates : applications of boolean
functions whose arguments may be of types other than B, Universal and
existential quantification.

LN7a
Ri(x1, ..., xn) - atomic formula, n is and arity of the relational symbol Ri. All
appearances of Ri must have the same arity.
Φ is a formula iff: Φ is atomic. Φ = Φ1 ∧ Φ2,Φ = Φ1 ∨ Φ2,Φ = Φ¬Φ where Φ1
and Φ2 are formulas. Φ = ∃[Φ],Φ = ∀[Φ]
Prenex Normal Form: All quantifiers appear in the front of the formula. We
assume all our formulas are in prenex normal form. It can be proved that every
formula has its equivalent prenex normal form. Free variable: not bound by any
quantifier Sentence, statement: no free variables.
A model (interpretation, structure) is a tuple M = (U, P1, ..., Pk), where U is a
universe over which the variables may take values, Pi is a relation assigned to the
symbol Ri. A language of a model is the set of all formulas of the model. If the
formula Φ is true in a model M, we say that M is a Model of Φ.
Φ = ∀x.∀y.R1(x, y) ∨ R1(y, x) Model M1 : U - natural numbers, P1 is ≤ (we
write a ≤ b instead of ≤ (a, b) or P1(a, b))ΦM1 = ∀x.∀y.x ≤ y ∨ y ≤ x - the
formula ΦM1 is true so M1 is a model of Φ. Model M2: U - natural numbers, P1
is < (we write a < b instead of < (a, b) or P1(a, b)) ΦM2 = ∀x.∀y.x < y ∨ y < x,
the formula ΦM2 is false so M2 is not a model of Φ.
Examples of English to Predicate logic:
(a) The natural number 1 is the only natural number that is smaller than positive
integer p and divides p. (∀d|1 < d < p : ¬(∃v|0 ≤ v : d · v = p)) (c) Adding two
odd integers yields an even number. (Use only addition and multiplication; do
not use division, mod, or predicates even.x and odd.x)
(∀x, y : Z|(∃i, j : Z| : x = 2 · i + 1 ∧ y = 2 · j + 1) : (∃k : Z| : x + y = 2 · k)) ∀
Everybody, ∃ Somebody, ¬∃ Nobody.
(a) Everybody loves everybody. (∀x : P | : (∀y : P | : loves(x, y))) (b) Nobody
loves everybody. ¬(∃x : P | : (∀y : P | : loves(x, y))) (c) Somebody loves nobody.
(∃x : P | : ¬(∃y : P | : loves(x, y)))

	Theorems
	Equivalence and true
	Negation, inequivalence, and false
	Disjunction
	Conjunction
	Implication
	Leibniz as an axiom
	Proof techniques

	General Laws of Quantification
	Theorems of the Predicate Calculus
	Universal quantification
	Existential quantification

	LN1
	LN2
	Definitions

	LN3
	LN4
	LN5
	Definitions
	Peano Arithmetic
	Constructive Propositional Logic

	LN6
	Textual Substitution

	LN7
	LN7a

