
Programming Paradigms
Procedural: C, Assembly Object-Oriented:
C#, C++, Python, Java, Scala Functional:
Haskell, Elm, Scala Logical: Prolog

CS vs SE
CS: More theory focused, Algorithms
SE: Practical / Implementation, Design,
Regulated by CEAB, not taken too seriously by
PEO
PEO: Professional Engineers of Ontario,
Licensing and accreditation for Engineering
4 years of practical experience (3 with an
accredited degree), law / ethics exam, yearly fees
Regulation, enforcement, discipline
Has legal authority to fine companies misusing
the term engineer
Iron Ring just means you graduated, pretty
useless, get it at the Kipling ceremony
CEAB: Canadian Engineering Accreditation
Board, determines if an engineering program gets
approved.

SDLC
• Requirement Analysis

– Getting input from stakeholders (customers,
salespeople, industry experts, programmers.)

– What the software does
– Software Requirements Specification (SRS)

∗ Document describing what the software
is, what it does, etc.

– Functional Requirements
∗ What the software actually does
∗ Must be:

· Atomic: Each requirement should cover
exactly one function of the software

· Precise: Requirements should not be
ambiguous

· Verifiable: Must be testable to
determine whether the requirement is
actually met

∗ Things you can prove using logic /
discrete math

∗ “The software shall...”
– Non-functional Requirements

∗ Usability, performance, security
• Specification and Design

– Determining how the software will meet
requirements specified in SRS document.

– Modules, classes & objects, packages
– Libraries & APIs
– Class Diagrams
– What the code does, what should functions

output given specific inputs
• Coding

– How specification is implemented
• Deployment and Maintenance

Contract between client and
developers
Scope: Important for clients, allows for
specifying what should be included. Out of
scope: Important for devs, allows specifying
what the program will not be responsible for,
preventing feature creep.

Methodologies
Waterfall: Finish one phase completely, then
start the next. Each phase has mini-plan, and
waterfalls into next. Drawback is that missing
details in one phase end up causing issues in
future phases.

Agile: Separate product into cycles and deliver
working product quickly. Essentially small loops
of waterfall, each only concerned about a small
part of each step (eg requirements can be loose at
the beginning, sprints may not produce working
code). Constant feedback allows for issues to be
spotted before they become massive problems.
Lots of customer interaction can lead the project
astray.

Spiral: Similar to agile, but a prototype is made
each sprint cycle.

Good Software
Efficient, timely, performant.

• Maintainable: Salable
• Reliable: The ability of a system or

component to perform required functions under
static conditions for a specific period

• Correctness: Meets (specified) requirements.
Correctness is achieved if it behaves exactly as
intended for all of its use-cases. (eg passes
tests)

• Robust: Meets unspecified requirements. The
ability of a system to cope with errors during
execution, and cope with erroneous input (eg
the program should fail gracefully)

• Distribution of cost in development 40% of
cost on initial development. 60% on
maintenance. Of that, 20% is on making sure
things are correct, 20% is adaptive (correcting
things the client wants to be fixed), 20% is
improvement.

Object-Oriented Programming
Encapsulation
Safeguarding the content of a class from direct
outside access. Make certain fields private, access
them through public getters and setters.
Separation of concerns. Modularity: Programs
should be made up of independent,
interchangeable parts Information Hiding Single
responsibility Principle Open-close principle:
objects should be open for extension, but closed
for modification.

Relationships between Classes
Inheritance

Is-a relationship. Good for reusability, code does
not need to be rewritten.

Aggregation

Has-a relationship: A has-a B, then A has an
instance of B. Must be mandatory upon creation,
otherwise it is simply association / dependence

Composition

Part-of relationship: A part-of B, A can’t exist
without B, and vice-versa. A subset of
aggregation.

Dependence / Association

Uses-a relationship: A uses-a B, then A creates
an object of B inside a method. Association is
generally between unrelated classes.

Abstraction
Hides complexity from users, showing only
relevant info. Implementation hidden using
abstract (partially abstract) classes, or interfaces
(fully abstract).

Polymorphism
Performing a certain action in different ways (eg
animals can make different noises). Method
overloading: various methods with the same
name but different parameters. Method
overriding: child class overrides a method of its
parent.

UML Diagrams

Java
Abstract Class
Can have abstract and non-abstract method. Can
have non-final variables Can have final, non-final,
static, and non-static variables. Can provide
implementation of abstract class. Uses “extends”
Can only extend one other class, but can
implement multiple interfaces. Does not support
multiple inheritance. Can have private members.

Interface
Can only have abstract methods. Variables are
final by default. Can only have static and final
variables. Can’t provide implementation of
abstract class. Can extend one or more Java
interfaces. Supports multiple inheritance.
Members are public by default.

Multiple Inheritance
When a class inherits from more than one class.
Constructors are called in the order they are
inherited.

SOLID
Single responsibility principle: Each class
should have one and only one responsibility.

Open/Closed Principle: Classes should be open
for extension but closed for modification
Liskov’s Substitution Principle: Parent classes
should be easily substituted with child classes
without the application malfunctioning.
Interface Segregation Principle: Many
client-specific interfaces are better than one
general interface. Dependency Inversion
Principle: Classes should depend on abstraction,
but not on concretion. Aka, have an interface
which allows for communication with concrete
classes. If class A changes, class B should not be
affected.

Design Principles
Information Hiding
AKA Single Responsibility Principle AKA
Encapsulation

Changes to a class should have minimal impact
on other code: The API for a class should be
completely independent of the implementation.

Open-Closed
Entities should be open for extension, but closed
for modification.
In other words, the original functionality should
remain static, while allowing new functionality to
be added on, without the original source needing
to be modified.

Design for Interfaces
AKA Dependency Inversion Don’t depend on
concrete classes, use interfaces instead.

Creational Patterns
Factory
Provides an interface for creating objects in a
superclass, allows subclasses to alter type of
objects that will be created. Eg: Pizza, Shapes,
Ingot

1. Have an interface A

public interface Factory {
public Enemy spawn();

}

2. Have factory “products” implement A

public abstract class Enemy {
protected int health;
protected int strength;
public abstract void takeDamage(int damage

↪→);
public abstract void attack ();

}

3. Have the factory function return an object of
type A

public class AverageSpawner implements
↪→ Factory{

@Override
public Enemy spawn() {

Random r = new Random ();
double k;
k = r.nextDouble ();
if(k < 0.65) {return new Minion ();}
else if(k < 0.9) {return new Elite();}
else {return new Boss();}

}
}

4. Let clients get “products” through the factory
function

Advantages: Can switch out factories at runtime
to change what’s being produced. Object
instantiation is encapsulated. Single
Responsibility Principle - can move product
creation into a separate area, making code easier
to support. Open Closed Principle - can
introduce new types of products without affecting
existing code.
Disadvantages: Code can become complex due
to subclasses.

Singleton
Creational patter that ensure that class has only
one instance, while providing a global access
point to instance.

public class TheOne {
private static TheOne instance;
public static TheOne getInstance () {

if(instance == null) {
instance = new TheOne ();

}
return instance;

}
private TheOne () {}

}

Advantages: Guaranteed that class has only one
instance. Global access point to single instance.
Initialized only when needed (lazy).
Disadvantages: Violates SRP: solves two
problems at once (ensure class has only one
instance, and providing global access point to
instance). Can make for bad design, eg when
components know too much about each other.
Can be difficult to unit test client code, as
frameworks rely on inheritance when mocking.

Structural Patterns
Decorator
Lets you attach new behaviors to objects by
putting them in special wrappers that contain the
behaviors. Eg: Starbucks, Burgers

1. Create interface A

public interface Burrito {
public double getCost ();
public String getString ();

}

2. Create base class B that implements A

public class ChickenBurrito implements
↪→ Burrito{

public ChickenBurrito () {}
public String getString () {

return "Chicken" + "$12 .00";
}
public double getCost () {

return 12.00;
}

}

3. Create decorator class C that implements A,
that holds an instance of B, which is received
through constructor

public abstract class BurritoDecorator
↪→ implements Burrito {

protected Burrito burrito;
public BurritoDecorator(Burrito burrito) {

this.burrito = burrito;
}
@Override
public abstract double getCost ();
@Override
public abstract String getString ();

}

4. Create decorators by extending C and using
super

public class Guac extends BurritoDecorator {
public Guac(Burrito burrito) {

super(burrito);
}
@Override
public double getCost () {

return 1.50 + burrito.getCost ();
}
@Override
public String getString () {

return burrito.getString () + "\n--Guac +
↪→ "$1.50";

}
}

Decorators are both the original component, and
also use the original component.
Advantages: Extensibility of code, new decor
can just extend decorator interface. Greater
flexibility, able to add or remove decorators at
runtime. Simplifies coding, don’t have to put all
the functionality into the object. Single
Responsibility Principle, larger classes can be
broken down into several smaller ones.
Disadvantages: Code can be harder to maintain,
decreases as number of decorator classes grows.
Hard to remove wrappers. Hard to implement
decorators in a way that doesn’t depend on
ordering. E.g. Bird/Duck, Car/Boat

Adapter

public class Hospital {
private Patient [] currentPatients = new

↪→ Patient [100];
private MedOffice requester;
public void bookPatient(int index , Date date)

↪→ {
requester.registerPatient(currentPatients[

↪→ index]);
}

}
public interface MedOffice {

public void registerPatient(Patient patient);
}
public class MedOfficeAdapter implements

↪→ MedOffice{
private ActualMedOffice office = new

↪→ ActualMedOffice ();
@Override
public void registerPatient(Patient patient)

↪→ {
office.registerPatient(patient.getName (),

↪→ patient.getId());
}

}
public class ActualMedOffice {

public void registerPatient(String name , int
↪→ id) {}

}

Works as a bridge between two incompatible
interfaces. A single class converts the interface of
one object so that another object can understand
it. Advantages Single Responsibility Principle:
You can separate the interface or data conversion
code from the primary business logic of the
program. Open/Closed Principle: You can

introduce new types of adapters into the program
without breaking the existing client code, as long
as they work with the adapters through the client
interface. Disadvantages Overall complexity of
code increases because you need to introduce a
set of new interfaces and classes. Sometimes it’s
simpler just to change the service class so that it
matches the rest of your code.

Proxy
Lets you substitute or placeholder for another
object. Controls access to original object,
allowing for actions before / after request gets
through.Proxy is used as a security to emulate
the service so that the client cant access the
service directly (think of an ATM, we dont want
people to have access to the actual money
numbers, just a representation of them). Eg:
Database proxy, Discord Example

RealDiscordServer adm = new RealDiscordServer("
↪→ 2ME3");

ProxyDiscordServer usr = new ProxyDiscordServer
↪→ (adm);

User a = new User("j", usr);
User admin = new User("a", adm);
public class User {

String username;
DiscordServer ds;
public User(String u, DiscordServer ds) {

username = u;
this.ds = ds;

}
public void sentAMessage(String s) {

ds.sendMessage(s);
}
public void getAMessage () {

ds.recieveMessage ();
}
public void banPlayer(String s) {

ds.banUser(s);
}

}
public interface DiscordServer {

public void banUser(String s);
}
public class ProxyDiscordServer implements

↪→ DiscordServer {
DiscordServer ds;
public ProxyDiscordServer(DiscordServer ds) {

this.ds = ds;
}
@Override
public void banUser(String s) {

if (s.length () > 10) {
ds.banUser(s);

}
}

}
public class RealDiscordServer implements

↪→ DiscordServer {
String name;
public RealDiscordServer(String name) {

this.name = name;
}
@Override
public void banUser(String s) {

System.out.println("Banned: " + s);
}

}

Advantages Can control service object without
clients knowing Can manage lifecycle of service
object isn’t ready or isn’t available. Open/Closed
Principle You can introduce new proxies without
changing service or clients. Disadvantages Code
can become more complicated since new classes
are introduced. Response from service may be
delayed.

Behavioral Patterns
Strategy
Define a family of algorithms, put them each in
separate classes, and make their objects
interchangeable. E,g. Weapon (Fist, Sword)

1. Create a strategy interface

public interface Sorter {
public void sort(ArrayList <Double > data);

}

2. Create concrete strategies that implement the
interface

public class DefaultSorter implements Sorter
↪→ {

@Override
public void

sort(ArrayList <Double > data) {
Collections.sort(data);

}
}

3. Create a context to store the strategy

public class SensorData {
private ArrayList <Double > data = new

↪→ ArrayList <Double >();
private Sorter sort;
public SensorData () {

sort = new DefaultSorter ();
}
public void addValue(double value) {

data.add(value);
}
public void setSort(Sorter sort) {

this.sort = sort;
}
public void sort() {

sort.sort(data);
}

}

Advantages: Open-Closed Principle -
Introducing new strategies without changing the
encapsulation code, hiding of algorithm from
application. Algorithms used by object can be
changed at runtime. More maintainable, usable,
extensible.
Disadvantages: Overly complex if there are only
a few algorithms needed. Must be aware of the
difference between algorithms to pick the right
one.

Observer

Pull → – Push → !!

public interface Subject {
public void add(Observer o);
public void remove(Observer o);
public void update (! String s!);

}
public class Course implements Subject {

String courseName;
String courseAnnouncement;
ArrayList <Observer > students;
public Course(String courseName) {

this.courseName = courseName;
courseAnnouncement = "";
students = new ArrayList <Observer >();

}
@Override
public void add(Observer o) { students.add(o)

↪→ ; }
@Override
public void remove(Observer o) { students.

↪→ remove(o); }
@Override
public void update (! String s!) { for (

↪→ Observer o : students) { o.update (!
↪→ String s!); } } }

public interface Observer { public void
↪→ update (); }

public class Student implements Observer {
String name;
-Course course;-
String courseAnnouncement;
public Student(String name , -Course course

↪→ -) {
this.name = name;
-this.course = course;-
-enroll ();-

}
@Override
public void update (! String s!) {

-courseAnnouncement = course.
↪→ courseAnnouncement;-

!courseAnnouncement = s;!
}
-public void enroll () {

System.out.println(name + " enrolled in " +
↪→ course.getCourseName ());

course.add(this);-
}
-public void drop() {

System.out.println(name + " dropped " +
↪→ course.getCourseName ());

course.remove(this);-
}

}

Publisher calls update() on subscribers when
needed. Subscribers can be added or removed at
runtime. Push: when update() is called, the
observers directly get the data from the function.
Pull: when update is called, subject.getState() is
used to get the data instead. Advantages:
Open-Closed Principle, can add new subscribers
without changing the publisher. Can establish
Relationships between objects at runtime.
Disadvantages: Subscribers are notified in
random order. Push: Observer is notified that a
change has occurred and must find out itself what
changes have occurred. Used when all the
observers are interested in common state changes.
Not used for large amounts of data. No need for
getState().(Advantage)Suppliers generate events
and actively pass them to an event channel. Pull:
The subject sends observers detailed information
about the change that has occurred(in the
simplest case, the entire new state itself). No
parameter for the state in update() but need
getstate() for subject construct class.This can
lead to further requests from the observer to the
subject. More than one call is required → change
notification from the subject to all its observers
→ interested observer must call at least one
method to pull data. (Advantage)simpler to
write, and work when the client application is
hosted behind a firewall (traffic is outbound).

Command
Turns a request into a stand-alone object
containing all information about request. Allows
requests to be passed as method arguments, delay
or queue a request’s execution, and undo
operations.

public class Remote {
Stack <Command > commands;
public Remote () { commands = new Stack <

↪→ Command >(); }
public void execute(Command c) { commands.add

↪→ (c); c.execute (); }
}
public interface Command { public void execute

↪→ (); }
public class LightON implements Command {

Light l;
public LightON(Light l) { this.l = l; }
@Override
public void execute () { l.turnOn (); }

}
public class Light {

boolean isOn;
String name;
public Light(String name) {

isOn = false;
this.name = name;

}
public void turnOn () { isOn = true; }
public void turnOff () { isOn = false; }

}

Pros: Single Responsibility Principle:
decoupling classes that invoke ops from classes
that perform ops Open/Closed Principle:
Introducing new commands into app without
breaking existing client code Implement
undo/redo. Implement deferred execution of
operations. Assemble set of simple commands
into a complex one. Cons: Code becomes more
complicated as new layer exists between senders
and receivers

Formal Specification
Form: (∀x : N | R : P), where ∀ is a quantifier, x
is a variable, N is the type of variable, R is the
range over which the predicate is to be executed,
and P is the predicate.

Formal Spec examples
• Checks if a list L contains x

(∃i | 0 ≤ i < |L| : x = L[I])

• Counts the amount of times x appears in list L
(
∑

i | 0 ≤ i < |L| ∧ L[i] = x : 1)

• Checks if a list is a sorted copy of another
(∀i : N | (0 ≤ i < |L1| − 1) : L1[i] ≤ L1[i +
1]) ∧ (∀i : N| : count(L, i) = count(L1, i))

• Checks if there’s a duplicate name in a set of
users (∀x, y : User | (x ∈ myUserSet ∧ y ∈
myUserSet) ∧ (x ̸= y) : (x.username ̸=
y.username))

• Checks if two circles overlap
(getPoints(this) ∪ getPoints(c)) ̸= 0

• All people have less than 10 children
(∀p1 : Person | p1 ∈ people : (

∑
p2 :

Person | p2 ∈ people : Children(p1, p2) ≤ 10)

• returns set of friendships associated with
friend (s) getfriends(s) =
friend : String : X(s, friend) ∈ Friendships

• Gives set of friends of friends
(∪(friend : String | friend ∈
getFriends(getFriends(s)) :
friend) − s − getfriends(s)

• (∪(friend : String | friend ∈
getFriends(getFriends(s)) :
friend) − s − getfriends(s)

• Gives set of friends of friends
(∪(friend : String | friend ∈
getFriends(getFriends(s)) :
friend) − s − getfriends(s)

Valid Group Exercise Example
• Types Student = Tuple(id:String,gender:String,

discipline:string, section:Z), Team = Student,
Classlist:Student, Teams:Teams

• Everyone in the teams, is enrolled in the course
(∀t : Team | t ∈ Teams : 4 ≤ |t| ≤ 6)

• Each student enrolled in the course is in a
team (∀s : Student | s ∈ Classlist : (∃t :
Team | t ∈ Teams : s ∈ t))

• No student appears in two different teams
exactly one team (∀s : Student | s ∈
Classlist : (∀t1, t2 : Team | t1, t2 ∈ Teams :
s ∈ t ∧ s ∈ t2 → t1 = t2))

• No student appears in two different teams
exactly one team (∀s : Student | s ∈
Classlist : (∀t1, t2 : Team | t1, t2 ∈ Teams :
s ∈ t ∧ s ∈ t2 → t1 = t2))

• All teams have 4 to 6 students
(∀t : Team | t ∈ Teams : 4 ≤ |t| ≤ 6)

MIS
Uses

• Imported constants, data types, and access
programs

Syntax

• Exported constants
• Exported types
• Exported access routine (routine name, input

and output parameter types, exceptions in a
table)

Semantics

• State variables (global variables)
• State invariants (predicates using state

variables where after every access routine call,
should remain true)

• Assumptions
• Access routine semantics

– transition = changing state variables (eg
transition: this.start, this.end := start, end)

– output = output of access routine (eg
output: out := this)

– exception = exception (eg exception: none)
• Local functions, types, constants (used for

specification only, not used at runtime)
• Other considerations (eg consider doing x to y

to do z)

Program Specification
(what it does)

Implementation (how
it does it)

Math/logic Code/computers
Natural
numbers/Integers

int

Real numbers Doubles, floats
Strings Strings
Sets Sets, collections,

adapted lists etc.
Sequences Lists, arrays, array

lists etc.

Testing
V-Model: Verification and Validation model.
Associates each testing stage with its
corresponding development stage. The next step
only starts once the previous step is complete.
Unit Testing: Test individual methods /
functions, with provided input expect certain
output. Black Box: Test without knowledge of
the code (generally check functionality, edge
cases) White Box: Test with knowledge of the
code Code Graph: Graph of the code, each node
is a statement, each edge is a branch. Statement
Coverage: Test cases cause each statement to be
executed at least once. Edge Coverage: Test
cases cause each edge of each decision (each
branch of if statements) to be executed at least
once. 1 for if and else together Test suite has
statement coverage ⇔ has edge coverage. There
are cases where edge coverage is not enough to
prove that the program works (eg if variables are
being modified) Path Coverage: Test cases
cause each path through the program to be
executed at least once (each possible combination
of edges). 1 for each if and else Static Testing:
Test without running the program (reading code)
Dynamic Testing: Test by running the program
(unit testing)

Number of bugs
15 - 50 bugs per 1000 lines of code.
If N is the actual number of bugs, one team
(markers) found M bugs, another team (catchers)
found C bugs, and there were S bugs in common,
then the actual number of bugs ranges between

N1 = (C − S)M
S

to N2 = (M − S)C
S

. This

assumes that M
S

= N
(C−S)

, aka the ratio of

marked bugs to marked bugs caught resembles
actual bugs to caught actual bugs. Might not be
true though, since marked bugs are easier to
catch.

Fault Seeding
Intentionally adding issues into code to try to
determine how many issues are caught. See above
for the formula used. Not necessarily accurate, as
seeded issues are probably more likely to be
discovered, as they are likely easier to implement.

	Programming Paradigms
	CS vs SE
	SDLC
	Contract between client and developers
	Methodologies

	Good Software
	Object-Oriented Programming
	Encapsulation
	Relationships between Classes
	Inheritance
	Aggregation
	Composition
	Dependence / Association

	Abstraction
	Polymorphism

	UML Diagrams
	Java
	Abstract Class
	Interface

	Multiple Inheritance
	SOLID
	Design Principles
	Information Hiding
	Open-Closed
	Design for Interfaces

	Creational Patterns
	Factory
	Singleton

	Structural Patterns
	Decorator
	Adapter
	Proxy

	Behavioral Patterns
	Strategy
	Observer
	Command

	Formal Specification
	Formal Spec examples
	Valid Group Exercise Example
	MIS
	Uses
	Syntax
	Semantics

	Testing
	Number of bugs
	Fault Seeding

