Programming Paradigms

Procedural: C, Assembly Object-Oriented: C#, C++,
Python, Java, Scala Functional: Haskell, Elm, Scala
Logical: Prolog

CS vs SE

CS: More theory focused, Algorithms

SE: Practical / Implementation, Design, Regulated by
CEAB, not taken too seriously by PEO

PEO: Professional Engineers of Ontario, Licensing and
accreditation for Engineering

4 years of practical experience (3 with an accredited
degree), law / ethics exam, yearly fees

Regulation, enforcement, discipline

Has legal authority to fine companies misusing the term
engineer

Iron Ring just means you graduated, pretty useless, get
it at the Kipling ceremony

CEAB: Canadian Engineering Accreditation Board,
determines if an engineering program gets approved.

SDLC

e Requirement Analysis

— Getting input from stakeholders (customers,
salespeople, industry experts,
programmers.)

— What the software does
— Software Requirements Specification (SRS)

* Document describing what the
software is, what it does, etc.

— Functional Requirements
* What the software actually does
* Must be:

Atomic: Each requirement should
cover exactly one function of the
software

Precise: Requirements should not
be ambiguous

Verifiable: Must be testable to
determine whether the
requirement is actually met

* Things you can prove using logic /
discrete math
* “The software shall...”

— Non-functional Requirements

= Usability, performance, security
e Specification and Design

— Determining how the software will meet
requirements specified in SRS document.

— Modules, classes & objects, packages
— Libraries & APIs
— Class Diagrams

— What the code does, what should functions
output given specific inputs

e Coding
— How specification is implemented

e Deployment and Maintenance

Contract between client and developers

Scope: Important for clients, allows for specifying what
should be included. Out of scope: Important for devs,
allows specifying what the program will not be
responsible for, preventing feature creep.

2MES3 - Jason Huang

Methodologies

Waterfall: Finish one phase completely, then start the
next. Bach phase has mini-plan, and waterfalls into next.
Drawback is that missing details in one phase end up
causing issues in future phases.

[Requirement Analysis|

Testing

Deployment

Agile: Separate product into cycles and deliver working
product quickly. Essentially small loops of waterfall, each
only concerned about a small part of each step (eg
requirements can be loose at the beginning, sprints may
not produce working code). Constant feedback allows for
issues to be spotted before they become massive
problems. Lots of customer interaction can lead the
project astray.

Requirements |

t v

Code

Specifications

Test €—|

Spiral: Similar to agile, but a prototype is made each
sprint cycle.

Good Software

Efficient, timely, performant. Maintainable: Salable,
Extendable, Reusable, Readable High Usability.
Reliable: The ability of a system or component to
perform required functions under static conditions for a
specific period Correctness: Meets (specified)
requirements. Correctness is achieved if it behaves
exactly as intended for all of its use-cases. (eg passes
tests) Robust: Meets unspecified requirements. The
ability of a system to cope with errors during execution,
and cope with erroneous input (eg the program should
fail gracefully) Distribution of cost in development
40% of cost on initial development. 60% on maintenance.
Of that, 20% is on making sure things are correct, 20% is
adaptive (correcting things the client wants to be fixed),
20% is improvement.

Object-Oriented Programming
Encapsulation

Safeguarding the content of a class from direct outside
Make certain fields private, access them through
public getters and setters. Separation of concerns.
Modularity: Programs should be made up of
independent, interchangeable parts Information Hiding
Single responsibility Principle Open-close principle:
objects should be open for extension, but closed for
modification.

access.

Relationships between Classes

Inheritance

Is-a relationship. Good for reusability, code does not
need to be rewritten.

Aggregation

Has-a relationship: A has-a B, then A has an instance of
B. Must be mandatory upon creation, otherwise it is
simply association / dependence

Composition

Part-of relationship: A part-of B, A can’t exist without
B, and vice-versa. A subset of aggregation.

Dependence / Association

Uses-a relationship: A uses-a B, then A creates an object
of B inside a method. Association is generally between
unrelated classes.

Abstraction

Hides complexity from users, showing only relevant info.
Implementation hidden using abstract (partially
abstract) classes, or interfaces (fully abstract).

Polymorphism

Performing a certain action in different ways (eg animals
can make different noises). Method overloading:
various methods with the same name but different
parameters. Method overriding: child class overrides a
method of its parent.

UML Diagrams
Class

Student
t——> + name : String
#roll: Integer
L - section : String
+ Display ()
-Add ()
~Edit()
Delete ()
Responsibilities
--Manage student in a class ¢/——— Extra component
(This is not mandatory)

Visibility
Public

Name

p o

ibutes
Private

- Operations

u ”
'some verb’ o
E Association

] s

Child Parent N
Inheritance
Implementer interface
“““““““““ Realization
Logic of A depends on B
“““““““““ Dependency
Car Engine [)
Aggregation

i
j‘ E

Composition
Engine won't exist without car |_ P

Java
Abstract Class

Can have abstract and non-abstract method. Can have
non-final variables Can have final, non-final, static, and
non-static variables. Can provide implementation of
abstract class. Uses “extends” Can only extend one other
class, but can implement multiple interfaces. Does not
support multiple inheritance. Can have private members.

Interface

Can only have abstract methods. Variables are final by
default. Can only have static and final variables. Can’t
provide implementation of abstract class. Can extend one
or more Java interfaces. Supports multiple inheritance.
Members are public by default.

Multiple Inheritance
When a class inherits from more than one class.
Constructors are called in the order they are inherited.

SOLID

Single responsibility principle: Each class should have
one and only one responsibility.

Open/Closed Principle: Classes should be open for
extension but closed for modification

Liskov’s Substitution Principle: Parent classes should
be easily substituted with child classes without the
application malfunctioning. Interface Segregation
Principle: Many client-specific interfaces are better than
one general interface. Dependency Inversion

Principle: Classes should depend on abstraction, but
not on concretion. Aka, have an interface which allows
for communication with concrete classes. If class A
changes, class B should not be affected.

Design Principles

Information Hiding
AKA Single Responsibility Principle AKA Encapsulation

Changes to a class should have minimal impact on other
code: The API for a class should be completely
independent of the implementation.

Open-Closed

Entities should be open for extension, but closed for
modification.

In other words, the original functionality should remain
static, while allowing new functionality to be added on,
without the original source needing to be modified.

Design for Interfaces

AKA Dependency Inversion Don’t depend on concrete
classes, use interfaces instead.

Creational Patterns

Factory

Provides an interface for creating objects in a superclass,
allows subclasses to alter type of objects that will be
created.

1. Have an interface A

package factory;
public interface Factory {
public Enemy spawn ();

2. Have factory “products” implement A

package factory;
public abstract
protected int health;
protected int strength;
public abstract void
takeDamage (int damage);
public abstract void attack ();

class Enemy {

3. Have the factory function return an object of type
A

package factory;

import java.util.Random;

public class AverageSpawner
implements Factory {

@Override

public Enemy spawn () {
Random r = new Random ();
double k;
k = r.nextDouble ();

if(k < 0.65) {
return new Minion ();

else if(k < 0.9) {
return new Elite ();

else {
return new Boss ();

4. Let clients get “products” through the factory
function

Product p = createProduct()

pdoStuff)
3
Creator)
«interface»
Product
+ someOperation()
+ createProduct(): Product + doStuff()
A
ConcreteCreatorA ConcreteCreatorB Concrete 1‘2 i Concrete
4 ProductA ProductB
+ t0: Product | [+« t0: Product

return new ConcreteProductA)

<Factory> %‘ Product ‘
+ createProduct()
ConcreteFactory3 Product3

ConcreteFactory2 !

C actory1 E Product =

Advantages: Can switch out factories at runtime to
change what’s being produced. Object instantiation is
encapsulated. Single Responsibility Principle - can move
product creation into a separate area, making code easier
to support. Open Closed Principle - can introduce new
types of products without affecting existing code.
Disadvantages: Code can become complex due to
subclasses.

Design Patterns

Decorator

Lets you attach new behaviors to objects by putting
them in special wrappers that contain the behaviors.

1. Create interface A

public interface Burrito {
public double getCost ();
public String getString ();

}

2. Create base class B that implements A

public class ChickenBurrito
implements Burrito{
public ChickenBurrito () {}
public String getString ()
return ” Chicken” + ”$12.00";

}
public double getCost () {
return 12.00;

3. Create decorator class C that implements A, that
holds an instance of B, which is received through
constructor
public abstract class
BurritoDecorator
implements Burrito {

protected Burrito burrito;

public BurritoDecorator
(Burrito burrito) {

this.burrito = burrito;
@Override
public abstract double getCost ();
@Override
public abstract String getString ();

4. Create decorators by extending C and using super

public class Guac
extends BurritoDecorator
public Guac(Burrito burrito) {
super (burrito);

@Override
public double getCost () {
return 1.50
+ burrito.getCost ();
@Override
public String getString () {
return burrito.getString ()
+ "\n—Guac-+-"$1.50";

a = new ConcComponent()
ew ConcDecoratorl(a)
= new ConcDecorator2(b) 5
1 cexecute()
«interface» // Decorator -> Decorator -> Component
e

+ execute()

Concrete Base Decorator
C

- wrappee: Component

+ BaseDecorator(c: Component)
+ execute()

wrappee = ¢

+ execute()

Wrappee.execute()

Concrete
Decorators

+ execute()
+ extra()

<Burrito>

extra()

+getCost(): int
+ getString(): string

+ setSize(int): void

BurritoDecorator

Decorators are both the original component, and also use
the original component.

Advantages: Extensibility of code, new decor can just
extend decorator interface. Greater flexibility, able to
add or remove decorators at runtime. Simplifies coding,
don’t have to put all the functionality into the object.
Single Responsibility Principle, larger classes can be
broken down into several smaller ones.

Disadvantages: Code can be harder to maintain,
decreases as number of decorator classes grows. Hard to
remove wrappers. Hard to implement decorators in a way
that doesn’t depend on ordering.

Behavioral Patterns
Strategy

Define a family of algorithms, put them each in separate
classes, and make their objects interchangeable.

1. Create a strategy interface

import java.util.ArrayList;
public interface Sorter {
public void
sort (ArrayList <Double> data);

2. Create concrete strategies that implement the
interface

util.ArrayList;
util.Collections
DefaultSorter

import java.
import java .
public class

implements Sorter {
@Override
public void
sort (ArrayList<Double> data) {
System .out
_println (”Default-Sort”);
Collections .sort (data);

3. Create a context to store the strategy

util. ArrayList;
import java.util. Collections;
public class SensorData

private ArrayList<Double> data

= new ArrayList<Double >();
private Sorter sort;
public SensorData () {
sort = new DefaultSorter ();
}

public void
addValue (double value) {
data.add(value);

import java.

setSort (Sorter
sort = sort;

}
public void sort) {

this .
}
public void print () {

System .out
.printin (data .

sort () {

toString ());

public void

sort.sort (data);
}
}
Context q
«interface»
- strategy Strategy

+ setStrategy(strategy)
+ doSomething()

+ execute(data)

strategy execute()

ConcreteStrategies

Client

+ execute(data)

str = new
context.setStrategy(str)
context.doSomething()

"

other = new OtherStrategy()
context.setStrategy(other)
context.doSomething()

Application <PathAlgorithm>
- Graph: graph +calcPathiGraph)
- PathAlgorithm: al

+ shortestPath()

+ setPathAlgorithm(PathAlgarithm)

Advantages: Open-Closed Principle - Introducing new
strategies without changing the encapsulation code,
hiding of algorithm from application. Algorithms used by
object can be changed at runtime. More maintainable,
usable, extensible.

Disadvantages: Overly complex if there are only a few
algorithms needed. Must be aware of the difference
between algorithms to pick the right one.

	Programming Paradigms
	CS vs SE
	SDLC
	Contract between client and developers
	Methodologies

	Good Software
	Object-Oriented Programming
	Encapsulation
	Relationships between Classes
	Inheritance
	Aggregation
	Composition
	Dependence / Association

	Abstraction
	Polymorphism

	UML Diagrams
	Java
	Abstract Class
	Interface

	Multiple Inheritance
	SOLID
	Design Principles
	Information Hiding
	Open-Closed
	Design for Interfaces

	Creational Patterns
	Factory

	Design Patterns
	Decorator
	Behavioral Patterns
	Strategy

