
2ME3 - Jason Huang

Programming Paradigms
Procedural: C, Assembly Object-Oriented: C#, C++,
Python, Java, Scala Functional: Haskell, Elm, Scala
Logical: Prolog

CS vs SE
CS: More theory focused, Algorithms

SE: Practical / Implementation, Design, Regulated by
CEAB, not taken too seriously by PEO

PEO: Professional Engineers of Ontario, Licensing and
accreditation for Engineering
4 years of practical experience (3 with an accredited
degree), law / ethics exam, yearly fees
Regulation, enforcement, discipline
Has legal authority to fine companies misusing the term
engineer
Iron Ring just means you graduated, pretty useless, get
it at the Kipling ceremony

CEAB: Canadian Engineering Accreditation Board,
determines if an engineering program gets approved.

SDLC
• Requirement Analysis

– Getting input from stakeholders (customers,
salespeople, industry experts,
programmers.)

– What the software does

– Software Requirements Specification (SRS)

∗ Document describing what the
software is, what it does, etc.

– Functional Requirements

∗ What the software actually does
∗ Must be:

· Atomic: Each requirement should
cover exactly one function of the
software

· Precise: Requirements should not
be ambiguous

· Verifiable: Must be testable to
determine whether the
requirement is actually met

∗ Things you can prove using logic /
discrete math

∗ “The software shall...”

– Non-functional Requirements

∗ Usability, performance, security

• Specification and Design

– Determining how the software will meet
requirements specified in SRS document.

– Modules, classes & objects, packages

– Libraries & APIs

– Class Diagrams

– What the code does, what should functions
output given specific inputs

• Coding

– How specification is implemented

• Deployment and Maintenance

Contract between client and developers
Scope: Important for clients, allows for specifying what
should be included. Out of scope: Important for devs,
allows specifying what the program will not be
responsible for, preventing feature creep.

Methodologies
Waterfall: Finish one phase completely, then start the
next. Each phase has mini-plan, and waterfalls into next.
Drawback is that missing details in one phase end up
causing issues in future phases.

Agile: Separate product into cycles and deliver working
product quickly. Essentially small loops of waterfall, each
only concerned about a small part of each step (eg
requirements can be loose at the beginning, sprints may
not produce working code). Constant feedback allows for
issues to be spotted before they become massive
problems. Lots of customer interaction can lead the
project astray.

Spiral: Similar to agile, but a prototype is made each
sprint cycle.

Good Software
Efficient, timely, performant. Maintainable: Salable,
Extendable, Reusable, Readable High Usability.
Reliable: The ability of a system or component to
perform required functions under static conditions for a
specific period Correctness: Meets (specified)
requirements. Correctness is achieved if it behaves
exactly as intended for all of its use-cases. (eg passes
tests) Robust: Meets unspecified requirements. The
ability of a system to cope with errors during execution,
and cope with erroneous input (eg the program should
fail gracefully) Distribution of cost in development
40% of cost on initial development. 60% on maintenance.
Of that, 20% is on making sure things are correct, 20% is
adaptive (correcting things the client wants to be fixed),
20% is improvement.

Object-Oriented Programming

Encapsulation
Safeguarding the content of a class from direct outside
access. Make certain fields private, access them through
public getters and setters. Separation of concerns.
Modularity: Programs should be made up of
independent, interchangeable parts Information Hiding
Single responsibility Principle Open-close principle:
objects should be open for extension, but closed for
modification.

Relationships between Classes
Inheritance

Is-a relationship. Good for reusability, code does not
need to be rewritten.

Aggregation

Has-a relationship: A has-a B, then A has an instance of
B. Must be mandatory upon creation, otherwise it is
simply association / dependence

Composition

Part-of relationship: A part-of B, A can’t exist without
B, and vice-versa. A subset of aggregation.

Dependence / Association

Uses-a relationship: A uses-a B, then A creates an object
of B inside a method. Association is generally between
unrelated classes.

Abstraction
Hides complexity from users, showing only relevant info.
Implementation hidden using abstract (partially
abstract) classes, or interfaces (fully abstract).

Polymorphism
Performing a certain action in different ways (eg animals
can make different noises). Method overloading:
various methods with the same name but different
parameters. Method overriding: child class overrides a
method of its parent.

UML Diagrams

Java
Abstract Class
Can have abstract and non-abstract method. Can have
non-final variables Can have final, non-final, static, and
non-static variables. Can provide implementation of
abstract class. Uses “extends” Can only extend one other
class, but can implement multiple interfaces. Does not
support multiple inheritance. Can have private members.

Interface
Can only have abstract methods. Variables are final by
default. Can only have static and final variables. Can’t
provide implementation of abstract class. Can extend one
or more Java interfaces. Supports multiple inheritance.
Members are public by default.

Multiple Inheritance
When a class inherits from more than one class.
Constructors are called in the order they are inherited.

SOLID
Single responsibility principle: Each class should have
one and only one responsibility.
Open/Closed Principle: Classes should be open for
extension but closed for modification
Liskov’s Substitution Principle: Parent classes should
be easily substituted with child classes without the
application malfunctioning. Interface Segregation
Principle: Many client-specific interfaces are better than
one general interface. Dependency Inversion

Principle: Classes should depend on abstraction, but
not on concretion. Aka, have an interface which allows
for communication with concrete classes. If class A
changes, class B should not be affected.

Design Principles

Information Hiding

AKA Single Responsibility Principle AKA Encapsulation

Changes to a class should have minimal impact on other
code: The API for a class should be completely
independent of the implementation.

Open-Closed

Entities should be open for extension, but closed for
modification.

In other words, the original functionality should remain
static, while allowing new functionality to be added on,
without the original source needing to be modified.

Design for Interfaces

AKA Dependency Inversion Don’t depend on concrete
classes, use interfaces instead.

Creational Patterns

Factory

Provides an interface for creating objects in a superclass,
allows subclasses to alter type of objects that will be
created.

1. Have an interface A

package f a c t o ry ;
public interface Factory {

public Enemy spawn () ;
}

2. Have factory “products” implement A

package f a c t o ry ;
public abstract c lass Enemy {

protected int hea l th ;
protected int s t r ength ;
public abstract void

takeDamage (int damage) ;
public abstract void attack () ;

}

3. Have the factory function return an object of type
A

package f a c t o ry ;
import java . u t i l . Random ;
public c lass AverageSpawner

implements Factory{
@Override
public Enemy spawn () {

Random r = new Random () ;
double k ;
k = r . nextDouble () ;
i f (k < 0 .65) {

return new Minion () ;
}
else i f (k < 0 . 9) {

return new E l i t e () ;
}
else {

return new Boss () ;
}

}
}

4. Let clients get “products” through the factory
function

Advantages: Can switch out factories at runtime to
change what’s being produced. Object instantiation is
encapsulated. Single Responsibility Principle - can move
product creation into a separate area, making code easier
to support. Open Closed Principle - can introduce new
types of products without affecting existing code.
Disadvantages: Code can become complex due to
subclasses.

Design Patterns
Decorator
Lets you attach new behaviors to objects by putting
them in special wrappers that contain the behaviors.

1. Create interface A

public interface Burr i to {
public double getCost () ;
public Str ing ge tS t r ing () ;

}

2. Create base class B that implements A

public c lass ChickenBurrito
implements Burr i to{

public ChickenBurrito () {}
public Str ing ge tS t r ing () {

return ”Chicken” + ”$12 .00 ” ;
}
public double getCost () {

return 12 . 0 0 ;
}

}

3. Create decorator class C that implements A, that
holds an instance of B, which is received through
constructor

public abstract c lass
Burr i toDecorator
implements Burr i to{

protected Burr i to bu r r i t o ;
public Burr i toDecorator

(Burr i to bur r i t o) {
this . bu r r i t o = bur r i t o ;

}
@Override
public abstract double getCost () ;
@Override
public abstract Str ing ge tS t r ing () ;

}

4. Create decorators by extending C and using super

public c lass Guac
extends Burr i toDecorator {
public Guac(Burr i to bu r r i t o) {

super (bu r r i t o) ;

}
@Override
public double getCost () {

return 1 .50
+ bur r i t o . getCost () ;

}
@Override
public Str ing ge tS t r ing () {

return bur r i t o . g e tS t r ing ()
+ ”\n−−Guac + ”$1 .50 ” ;

 }
}

Decorators are both the original component, and also use
the original component.
Advantages: Extensibility of code, new decor can just
extend decorator interface. Greater flexibility, able to
add or remove decorators at runtime. Simplifies coding,
don’t have to put all the functionality into the object.
Single Responsibility Principle, larger classes can be
broken down into several smaller ones.
Disadvantages: Code can be harder to maintain,
decreases as number of decorator classes grows. Hard to
remove wrappers. Hard to implement decorators in a way
that doesn’t depend on ordering.

Behavioral Patterns
Strategy

Define a family of algorithms, put them each in separate
classes, and make their objects interchangeable.

1. Create a strategy interface

import java . u t i l . ArrayList ;
public interface Sor te r {

public void
s o r t (ArrayList<Double> data) ;

}

2. Create concrete strategies that implement the
interface

import java . u t i l . ArrayList ;
import java . u t i l . Co l l e c t i o n s ;
public c lass Defau l tSor t e r

implements Sor te r{
@Override
public void

s o r t (ArrayList<Double> data) {
System . out

. p r i n t l n (” Default Sort ”) ;
Co l l e c t i o n s . s o r t (data) ;

}
}

3. Create a context to store the strategy

import java . u t i l . ArrayList ;
import java . u t i l . Co l l e c t i o n s ;
public c lass SensorData {

private ArrayList<Double> data
= new ArrayList<Double >();

private Sor te r s o r t ;
public SensorData () {

s o r t = new Defau l tSor t e r () ;
}
public void

addValue (double value) {
data . add (value) ;

}
public void s e tSo r t (Sor te r s o r t) {

this . s o r t = so r t ;
}
public void pr in t () {

System . out
. p r i n t l n (data . t oSt r ing ()) ;

}
public void s o r t () {

s o r t . s o r t (data) ;
}

}

Advantages: Open-Closed Principle - Introducing new
strategies without changing the encapsulation code,
hiding of algorithm from application. Algorithms used by
object can be changed at runtime. More maintainable,
usable, extensible.
Disadvantages: Overly complex if there are only a few
algorithms needed. Must be aware of the difference
between algorithms to pick the right one.

	Programming Paradigms
	CS vs SE
	SDLC
	Contract between client and developers
	Methodologies

	Good Software
	Object-Oriented Programming
	Encapsulation
	Relationships between Classes
	Inheritance
	Aggregation
	Composition
	Dependence / Association

	Abstraction
	Polymorphism

	UML Diagrams
	Java
	Abstract Class
	Interface

	Multiple Inheritance
	SOLID
	Design Principles
	Information Hiding
	Open-Closed
	Design for Interfaces

	Creational Patterns
	Factory

	Design Patterns
	Decorator
	Behavioral Patterns
	Strategy

