2SD3 Final v0.2 — The Triumph of Bureaucracy and Vocal Minority: You

If you're reading this, please contribute! Petri Nets
REMINDER! This is a template! The cheat sheet Reachability Graphs
maintainer (.json) intentionally leaves extra space
for you to add your own notes! If something’s
missing, add it yourself! (and if it’s important
enough please contribute!)

FSP

Ele menﬁv1 Net'

Syntax / \y

(00) (00

(o0
// instance prefixing - a:P .
SWITCH = (on -> off -> SWITCH). X we wie
| ITWO_SWITCH = (a:SWITCH || b:SWITCH) . D) ac (10) we [,
// relabeling - /{newl/oldl, new2/old2, ...}. ﬂ/a—l] (e, uoe}
CLIENT = (call -> wait -> continue —> CLIENT). ke Readiabilit
SERVER = (request -> service -> reply -> SERVER). ot .
| ICLIENT_SERVER = (CLIENT||SERVER)/{call/request, Ton /;/4 o)
<~ reply/wait}.

// process prefixing (mutex) - {al, ..., ax} :: P idi i
RESOURCE = (acquire -> release -> RESOURCE) . Hldlng/Labellng
USER = (acquire -> user -> release -> USER). relabeling:
| IRESOURCE_SHARE = (a:USER || b:USER || {a, b}:: (PROCESS)/{newlabell/oldlabell , newlabel

<~ RESOURCE) .
// RESOURCE is a single shared instance between
< the two USERs
// for loop syntax
|| SWITCHES (N = 3)
)
// or alternatively
range Seats = 1..3

interface: (PROCESS)@{al...
actions except al . . . ax
hiding: (PROCESS) \{al...

- . al..an
(forall [i:l..N] s[i]:SWITCH yo77"" 121 . P replaces every action label n in

the alphabet of P with the labels al.n, ... , ax.n.
Thus, every transition (n — X) in the definition

axz} hides all

an} hides actions

|| SEATS=(seat(irl..3]:SEAT). of P is replaced with the transitions
// hiding operator - \{al, ..., ax) ({alin,...;az.n} — X)
// interface operator - @{al, ..., ax} Bisimulation

// these two do the same thing
USER (acquire -> use -> release -> USER)\{use}.
USER (acquire -> use -> release -> USER)@{
<> acquire, release}.
// syntax for progress
progress P = {a «..p ant
// syntax for hlgh priority
|Ic = (PllQ)<<{al, ..., an}.
// syntax for low priority
||1c = (PI1Q)>>{al, ..., an}.
// simulating a boolean
const False 0
const True
range Bool

State Bisimilarity — p = q iff whatever action
executed at p can also be executed at g, and vice
versa.

LTS Bisimilarity — P & Q iff each state p¢,
reachable from the initial state by a trace ¢t in P
is bisimilar to an appropriate state g4 that is
reachable from the initial state by the same trace
t in Q

Mutual Exclusion

Arbitrary interleaving of read and write actions
1 leads to interference. Interference bugs are
0..1 difficult to locate. We use mutual exclusion to
only give one process access to the shared
resource at a time.

Maker-user example

LOCK = (acquire->release->LOCK) .
Ul (acquire -> use -> release -> Ul).
MAKER = (make -> ready -> MAKER) . U2 = (acquire -> use -> release -> U2).
USER = (ready -> user —-> USER). | ISYSTEM = (ul:Ul]||u2:02]||{ul,u2}::LOCK) .
| IMAKER_USER = (MAKER || USER).
Above allows for lock—use—release for either
user but only one of them at a time.
Garden example (maybe move this to a diff Monitors and Semaphores

section later)
Monitor — A threadsafe class where each
function is wrapped by a mutex. Essentially, only

const N = one process may access the class at a time.
range T = 0..N Entirely syntactic sugar. Semaphore —
set VarAlpha = {value.{read[T],write[T]}} Essentially a mutex with a queue of processes
VAR = VAR[O],
VAR[u:T] = (read[u] ->VAR[u] down (s) : if s > 0 then
|write[v:T]->VAR[v]) . decremont s
TURNSTILE = (go -> RUN), else ) )
RUN = (arrive-> INCREMENT . block execution of calling process
|end —> TURNSTILE), up(s): if procisses blo;keg on s then
INCREMENT = (value.read[x:T] awaken one of them

else

->value.write[x+1]->RUN) increment s

+VarAlpha.
DISPLAY =(value.read|[T]->DISPLAY)+{value.write[T
— .
h const Max

3
| IGARDEN = (east:TURNSTILE || west:TURNSTILE || range Int 0.
< display:DISPLAY SEMAPHORE (N=0 SEMA[N],
|| {east,west,display)::value:VAR) SEMA [v:Int] = (up->SEMA[v+1]
/{go /{east,west}.go, |when (v>0) down->SEMA [v-1]
end/{east,west}.end}. ).
LOOP = (mutex.down -> critical -> mutex.up -> LOOP
— ).
| ISEMADEMO = (p[1..3]:LOOP || {p[l..3]}::mutex:
LTS SEMAPHORE (1)) .
Bounded Buffer
A buffer with a fixed number of slots
A=(a=Blb=C) gurce sy - counriol,
B=(a—B|b— D) counT[i:0..N]
S = C=(d—A) = (when (i<N) put->COUNT[i+1]
when (i>0 et->COUNT [i-1
‘*O D=(a—Clc—B) " = o
PRODUCER = (put->PRODUCER) .
CONSUMER = (get->CONSUMER) .
| |IBOUNDEDBUFFER = (PRODUCER| |BUFFER(5) | | CONSUMER) .

Nested Monitor Problem
P/T nets

Each place in a P/T net can hold multiple
tokens. Each transition has a weight, w,
associated with it. If it is an input transition,
firing takes w tokens from the input place. If its
an output transition, firing adds w tokens to the
output place. An action can only be fired if
enough input tokens are present in all input

places.

oldl eln

OC S
Dmlng Philosophers Problem

Simple minded construction:

FORK = (get —> put —> FORK) .

PHIL = (think -> right.get -> left.get —-> eat —>
< right.put -> left.put -> PHIL).

| IDINERS (N = 5) = forall[i : 1..N] (phil[i] PHIL
< || {phil[il.right, phil[(i % 5) + 1].
> left) FORK

Solution 1 — Add asymmetry into the
composition, where 1, 3, 5 always perform
‘left.get -> right.get’, while 2, 4 always perform
‘right.get -> left.get’.

PHIL

= (when(i=1]i=3|i=5) think -> left.get —>

— right.get -> eat -> left.put -> right.

— put -> PHIL

|when (i=2|i=4) think -> right.get -> left.
<> get -> eat -> right.put -> left.
< put -> PHIL).

Solution 2 — Use a butler to prevent more than 4
philosophers from sitting at the table.

PHIL

(think -> sitdown -> right.get -> left.get
—s -> eat -> right.put -> left.put ->

<+ getup -> PHIL).
BUTLER (K=4) = COUNT[0],
COUNT[i:1..4] = (when(i<K) sitdown -> COUNT[i+1] |
< getup -> COUNT[i-1]).
| IDINERS (N=5)
|| {phil[i:1..N] } £ tBUTLER (K=4)) .

Solution 3 — Use Simultaneity

Only fire a transition if both forks are available

Coloured Petri Nets

“Colours” are simply types of tokens that are
passed around the petri net Paths to transitions
are either labeled with variables or functions that
transform one of the input variables into the
object to remove from a state.

Shall (Not) Pass Edition

LEFTC) + 016 470

x
P [af Yhaplo

colour PH = with phl | ph2 | ph3 | ph4 | ph5

colour Fork = with f1 | £2 | £3 | f4 | f5

LEFT PH -> FORK, RIGHT PH -> FORK

var x : PH

fun LEFT x = case of phl => £2 | ph2 => £3 | ph3
<3 => f4 | phd => £5 | ph5 => f1

fun RIGHT x = case of phl => f1 | ph2 => £2 | ph3
< => f3 | phd => f4 | ph5 => f5

Semaphores and Extensions
Dijkstra’s Semaphore Operations

C(s) — initial value of a semaphore variable s
ndown(s) — number of times down(s) was
executed nup(s) — number of times up(s) was
executed npdown(s) — number of times down(s)
was passed

Then we define down and up:

down(s): ndown(s) = ndown(s)+1: if ndown(s)
<= nup(s) + C(s) then npdown(s) = npdown(s)
+ 1

up(s): if ndown(s) > nup(s) + C(s) then
npdown(s) = npdown(s) + 1; nup(s) = nup(s)+1;

Theorem 1.

nup(s))

npdown(s) = min(ndown(s), C(s) +

Multidimensional Semaphores of
Agerwala

edown(sl, S Smy Sl Sndmt
i,1 < i< mn,s; >0 and for all
j,lgjﬁm,sn+j = 0 then for all
i,1 <i<mn,s; =s; — 1 else block execution of
calling processes

eup(sy, 59, ..., sn: if processes blocked on
(81,--.,sp) then awaken al of them else for all
i,i<i<m,s;=s;+1

Inhibitor Nets

Add a circle to the transition side of an arc to
make it an inhibitor arc Now the transition can
only be fired if the places connected by inhibitor
arcs are empty.

Smokers’ Problem

3 Smokers each have an unlimited type of either
tobacco, cigarette paper, matches. 2 ingredients
are placed on the table, the smoker with the third
ingredient needed should pick up the ingredients,
make a cigarette, and smoke it. Next set of
ingredients won’t be placed until smoking is
completed

if for all

Simple-minded Solution

SMOKER_’ T-( get_paper -> get_match->roll_cigarrette
-> smoke_cigarrette —-> SMOKER_T) .
SMOKER| P—t get_tobacco -> get_match->
< roll_cigarrette -> smoke_cigarrette ->
< SMOKER_P) .
SMOKER_M=( get_tobacco -> get_paper—>
< roll_cigarrette -> smoke_cigarrette —>
< SMOKER_M) .

TOBACCO = ( delivered -> picked -> TOBACCO ).
PAPER = ( delivered -> picked -> PAPER ).
MATCH = ( delivered -> picked -> MATCH ).
AGENT_T = (can_deliver -> deliver_paper ->

<3 deliver_match -> AGENT_T ).

(can_deliver -> deliver_match
<3 deliver_tobacco -> AGENT_P ).

AGENT_M (can_deliver -> deliver_tobacco —>
< deliver_paper —-> AGENT_M ).

AGENT_P

- ->

RULE = (can_deliver -> smoking_completed -> RULE )
—

| |SMOKERS = (s_t :SMOKER_T
<+ SMOKER_M ).

= || s_p:SMOKER_P || s_m:

:TOBACCO || {s_t,s_m}::
:MATCH ) .
:RULE ||
:AGENT_P

| IRESOURCES ({s_m,s_p}:
<> PAPER || {s_t,s_p}:
| |AGENT_RULE ({s_m,s_p,s_t}:
< AGENT_T || {s_m,s_t}:
{s_t,s_p}::AGENT_M ).
| |ICIG_SMOKERS (SMOKERS
< AGENT_RULE) /
get_paper/s_t.picked,
get_paper/s_m.picked,
get_paper/s_p.picked,
deliver_paper/s_t.delivered,
deliver_paper/s_m.delivered,
deliver_paper/s_p.delivered,
smoking_completed/s_t.smoke_cigarrette,
smoking_completed/s_m.smoke_cigarrette,
smoking_completed/s_p.smoke_cigarrette}.

{s_m,s_p}::
I

= || RESOURCES ||

vovLunnnn
o

En"UE

|
kel-R kel

Property (safety)

property CORRECT_PICKUP
(s_t.get_paper—>s_t.get_match->CORRECT_PICKUP
| s_p.get_tobacco->s_p.get_match—>CORRECT_PICKUP

| s_m.get_tobacco—>s_m.get_paper—>CORRECT_PICKUP) .

Ask first, do later

SMOKER_T=( no_tobacco -> get_paper -> get_match->
< roll_cigarrette ->

smoke_cigarrette -> SMOKER_T)

SMOKER_P=( no_paper —-> get_tobacco -> get_match->
<+ roll_cigarrette —>

smoke_cigarrette -> SMOKER_P)

SMOKER_M=( no_match —-> get_tobacco —-> get_paper—>
<+ roll_cigarrette —>

smoke_cigarrette -> SMOKER_T)

TOBACCO = ( delivered -> picked -> TOBACCO )

PAPER = ( delivered —> picked —> PAPER )

MATCH = ( delivered -> picked -> MATCH )

AGENT_T = (can_deliver —> no_tobacco —>
< deliver_paper->deliver_match->AGENT_T)

AGENT_P = (can_deliver —> no_paper —>
<+ deliver_match->deliver_tobacco->AGENT_P

)
(can_deliver -> no_match ->
deliver_tobacco->deliver_paper->AGENT_M

AGENT_M
—

— )
RULE = (can_deliver —> smoking_completed -> RULE )

SMOKERS S_t:SMOKER_T || s_p:SMOKER_P ||
<~ SMOKER_M
RESOURCES {s_m,s_p}:
< |l {s_t,s_p}:
AGENT_RULE = {s_m,s_p,s_t}:
< AGENT_T || {s_m,s_t}:
<% s_p}::AGENT_M
CIG_SMOKERS (SMOKERS
—
{s_t.get_paper/s_t.picked,
_m.get_paper/s_m.picked,
_p.get_paper/s_p.picked,
_t.deliver_paper/s_t.delivered,
_m.deliver_paper/s_m.delivered,
P
t
m
P

s_m:

:TOBACCO
:MATCH
:RULE || {s_m,s_p}::
:AGENT_P || {s_t,

:PAPER

Il {s_t,s_m}:

|| RESOURCES || AGENT_RULE)

_p.deliver_paper/s_p.delivered,
_t.smoking_completed/s_t.smoke_cigarrette,
_m.smoking_completed/s_m.smoke_cigarrette,
_p.smoking_completed/s_p.smoke_cigarrette}.

vCovnunnnn

Safety and Liveness

Safety — asserts that nothing bad happens

Safety Property P — defines a process that
asserts any trace including the actions in the
alphabet of P is accepted by P, otherwise they
are transitions to the ERROR state, safety checks
are compositional hence they should be composed
with the appropriate (sub)system

Liveness — asserts that something good
eventually happens

Progress Property — asserts that it is always
the case that a particular action is eventually
executed, opposite of starvation, progress checks
are not compositional hence they should be
conducted after safety checks

Starvation — situation in which an action is
never execute

Terminal Set of States — set of states in which
every state is reachable from every other state in
the set and there is no transition from within to
set to any state outside the set

Priority — specifies actions that have a
higher/lower priority than any other action in the
alphabet of some state



CTL and LTL For the above FSPs, they both share the same  Properties Two Warring Neighbours A3Q2 - Gas Question

CTL LTS diagram (LTS version of the right petri net), yyith properties, whenever you add more Model this algorithm for two neighbours nl and
A: along all paths however, since ||S1 has simultaneous actions, its ¢ ansitions through alphabet extension, you need n2. Specified the required safety properties for const N = 3 //number of customers
. i petri net will be show simultaneity whereas S2 is siti N se i the field and check that it does indeed ensure const M = 2 //number of pumps
E: exists a path to apply this transition to every state and use it € R 1
X: next state will not. as a transition to an error state. mutually exclusive access. Specify the required range C = 1..N
F: some future state progress properties for the neighbours such that range P = 1..M
G: all fluturkeustates N b they both get to pick berries given a fair éggggMQR: 14(-2 //ATOUX]E gf M[m@{] or Gas
U: unti “killer” event must happen i = (prepayla:A]->gas|X:A]—
. ( A “leq ” PP ) . b scheduling strategy. if (x then CUSTOMER else ERROR) .
W: weak until (“killer” event may never happen). ) (H—(2 CASHIER = (customer [c:C].prepay [x:A]->start[P](c]
In CTL, must start with path operator (A/E). W > v const False = 0 s x]->CASHIER) . :
in CTL: A[pW q] = A[pUgq] V AG p (same with g::s: ggg? - %alse True PUMP = (start([c:C][x:A] -> gas[c][x]->PUMP).
E). 7 a th Chees et . {False], [ DEVIVER = (gas[P][c:Cllx:A]->customer[c].gas[x]-
Common Pattenrs AXg - in every next state. Sot Boolietiong T (et setRalsey fralsel L bmLIvER) . e 1) ourvs
EX ¢ - in some next state. “"\ P Pc BOOI[NAR :l\]/AL[lzalse] ’ ; ) AN 7) pampis. A
AG¢ - All computation paths beginning with s " VAL[v:Bool] = (setTrue -> VAL[True .. ;
the property ¢ holds Globall © N >C Tu M E 1 |setFalse -> VAL[False] /{pump[i:1..M].start/start[i],
the P perty ¢ hole Dally. e N t 6 Mutex Example ) S VALl pump[i:1..M].gas/gas[i]}.
- ere Exists a pa eginning in s suc - z .
that & holds Globally along the path. Workers in an office share a printer. The printer ) | \GASSTATION (customer[1..N]:CUSTOMER | |STATION)
AF ¢ - For All computation paths beginning with Mid is able to print any number of jobs before it runs ||FLAGS = (£lagl:BOOLVAR || £lag2:BOOLVAR) . // part b
s there will be some Future state where ¢ holds. QD idterm out of toner. This is replaced by a technician NEIGHBOURL = (flagl.setTrue —> TEST), range T - 1..2
EF¢ - There Exists a computation bath A central computer is connected to remote when necessary. TEST = <fli22&[}?:§gzil - property FIFO = (customer[i:T].prepay[A] -> PAID[i
beginning in s such that ¢ holds in some Future terminals, with seats for concert hall. Clients ‘
(flagl.setFalse —> NEIGHBOURI) = i]. =
states. . . choose a free seat and clerk enters the seat into  const J=3 else g PAID[i: T] .. (customer[i] ?as[A] > FIFO
A[¢1Udz] - All computation paths beginning in s the system and gives a ticket. We need to prevent range Jobs = 0..J fonter —> oxit —> flagl. Icustomer[j:T].prepay[A] —> PAIDIi][]])
satisfy that ¢; Until ¢g holds. double booking while letting clients choose any  // j Represents toner < setFalse -> PAID[i:T][J:T]= (customer[i].gas[A] -> PAID[]]).
E[¢1Uds] - There Exists a computation path available seat. ig%gggg[%_PﬁlgT?R_[fl;’h . o reol toner_s < NEIGHBOURI) | ICHECK_FIFO = (GASSTATION || FIFO).
beginning in s such that ¢1 Until ¢5 holds on it. 13 Jobsl = en J= eplace_tone ) +{{flagl, flag2}.BoolActions}.
X const False = 0 — PRINTER[J] NEIGHBOUR2 = (flag2.setTrue -> TEST), .
The future includes the present. const True = 1 |when >0 print_job -> PRINTER[j-1]). TEST - (flagl[b:Bool] -> A3Q3 - Cheese Question
EF® EGd AGD AF® range Bool = False..True USER = (print_job->USER) . if (b) then
5 SEAT = SEAT[False], const M = 2 (flag2.setFalse —-> NEIGHBOUR2)
SEAT [reserved:Bool] range Users = 0..M else set Bold = {bold[1..2]}
C C = ( reserve -> SEAT[True] | |TUSERS = (forall[i:Users] user [i]:USER). (enter -> exit-> flag2.setFalse -> NEIGHBOUR2) Se: Pgeet = ("‘ka[;ig]g& X
I | query(reserved] -> SEAT [reserved] TECHNICIAN=(replace_toner->TECHNICIAN) . ) +{{flagl, flag2}.BoolActions}. ggsTOQEROSefgegcéegseL>§§5%OMER) .
| when (reserved) reserve -> ERROR // error ||OFFICE=(USERS||PRINTER||TECHNICIAN) property SAFETY = (nl.enter -> nl.exit -> SAFETY | COUNTER = (getcheese->COUNTER) .
<> of reserved twice /{user[Users] .print_job/print_job}. — n2.enter —> n2.exit —> SAFETY). || CHEESE_COUNTER - (Customers:CUSTOMER | |
). | IFIELD = (nl:NEIGHBOURL || n2:NEIGHBOUR2 || {nl, 5 Customers: : COUNTER) .
range Seats = 0..1 < n2}::FLAGS || SAFETY).
. | ISEATS = (seat[Seats]:SEAT). H i progress ENTER1 {nl.enter}
Equivalences ~AF¢ = EG~¢ LOCK = (acquire -> release —> LOCK) . Binary ngaphore QueStlon . progress ENTER2 = {n2.enter}
—-EF¢ AG—¢ In an operating system, a binary semaphore is | IGREEDY = FIELD<<{{nl,n2}.{flagl, flag2}.setTrue}.
~AX¢ =EX-¢ TERMINAL = (choose[s:Seats] -> acquire used to control access to the console. The console Meske
AF¢ = A[TUS] —> seat[s].query[reserved:Bool] is used by user and system processes. Write down
-> (when (!reserved) seat [s].reserve -> el rith FSP for thi ¢ i N
BEo = BITI ,Iolease > TERMINAL tser processes may be denicd aceess to the | O
Elevator Example 1 )\ -nhen(reserved) release -> TERMINAL) console. B
“An upwards travelling elevator at the second set Terminals = {a, b} urger
floor does not change direction when it has _ . .. BSEMA = (up -> down -> BSEMA) . A cook puts burgers in a pot. A client checks if
| | CONCERT (Terminals:TERMINAL || Terminals:: { K 1 K
passengers wishing to go to the fifth floor” < SEATS || Terminals::LOCK) PROCESS = (console.up -> console.down —> PROCESS) . there is at least one burger in the pot, and if so,
o . set Processes = f{user[l..2],system(1..2]} the client must take one

CTL: AG(floor = 2 A direction =
0S = (Processes:PROCESS || Processes::console:

up A ButtonPressed5 = Aldirection = : < BSEMA
un U floom = 8]y, Q7 - Midterm — )>>{user} .

Trace to error: fill[2], c2:check, fill[1], cl.check,
c2.get, cl.get. Part b change pot to be:

Elevator Example 2 Pl (a->b ->c ->Pl | a->c->b ->Pl). . . POT = POT[O0]
“The elevator can remain idle on the third floor P2 = (a => (b -> c => P2 | ¢ => b —> P2)). Dlnlng Savages POT[p: li)}rqers] - (vhen.(p>0h check -> get -> POT[
<% p-1] | f£ill(n: Burgers] —-> POT[n]).

with 1tZ doors closed” Q= (b ->c->0). The dining savages: A tribe of savages eats

CTL: AG((floor = 3 A idle A door = closed) =

. I1P10 = (P1 || Q). communal dinners from a large pot capable of
EG(floor = 3 Aiddle A door = closed)) 11P20 = (P2 || Q). holding M servings of stewedgmgsionafies. ‘When
LTL . X a savage wants to eat, he helps himself from the
L - false, T - true Other symbols mean the same For Ptl the(rte' are;wog’205?:bl: ptathsltvghlch have pozllur;}l‘ess it kis e?.]ﬁty’hin W}tﬂclhf iise het \{vaits "
o . an a transition. For P2, it starts with one a until the cook refills the pot. e pot is empty,
as above. A set of paths satisfies ¢ if every path ¢ransition, so both the starting states are the cook refills the pot wl;)th M serviggs. The pty. CTL and LTL Examples .
in the set satisfies ¢ equivalent in this case. In both branches of P1, behavior of the savages and the cook is described If the process is enabled infinitely often, then it
Equlvalences -G = F-¢ you either do b — ¢ — P1 or ¢ — b — P1. For by runs infinitely often.
P2, it splits into two possible paths, b — ¢ — P2 GF enabled = GF running
or ¢ = b — P2, which is the same as the traces gyyacp - (get_serving->SAVAGE) . AG(AF enabled) = AG(AF running)
for P1. Therefore P1 and P2 are equivalent. COOK = (£ill_pot—>COOK) . A passenger entering the elevator on 5th floor
For |[|P1Q and |[P2Q,both P1 and Q, and P2 and and pushing 2nd-floor button will never reach 6th
Q, share b — ¢. In P1 and Q, this becomes a . floor, unless 6th-floor button is already lit or

Model the behaviour of the pot and of the system

shared action and both P1 and Q will want to use
as FSP processes.

somebody will push it, no matter if she/he
the same transitions at the same time (deadlock).

entered an upwards or upward travelling elevator.

For HPZQ,‘the FSP‘ can choose to go in the s AG(floor = 5 A ButtonPressed2 =
alternate direction instead of waiting for Q to ‘S:XGKGE " (Setserving —> SAVAGE)
YW (A P) finish, so this one would not have a deadlock COOK (ﬁclllpotrfi gOOK) . A[-floor = 6 U ButtonPressed6))

s whereas ||P1Q will have one. POT = SERVINGS[0], . P . . ¢ .
Dynamic Systems Alohabet Extension v TN 0o L (whem (1o-0) fillpor - Dining ?hl‘losophers with a}:omlc
Golf Club Program P <> SERVINGS[M] | when (i>0) getserving -> act of picking up both forks
Players at a golf club borrow and then return golf Processes < SERVINGS[i-1]) .
balls. Different players need different numbers of p _ (o 5 p _» P) | ISAVAGES = (SAVAGE || COOK || POT). FORK = ( reserve_right -> take_right -> put_right
balls. How do we model the infinite stream of = (c > d —> © —> FORK
players? We can only model infinite behaviours. s = (¢ > d >8] + (b} | reserve_left -> take_left -> put_left -> FORK ).

. . s s 33 . PHIL = (think -> reserve_forks —-> USE_FORKS) .

Adverse Scheduling When taking the composition of |[PQ and ||PQa, glmplli;iled Multidimensional USE_FORKS = ( take right’—> take left — eat —
Intentionally schedule priorities to try to break  we take the union of both processes and remove emaphores - )

. A ip 4 | take_left -> take_right -> eat -> PUT_FORKS ),
things duplicate transitions. In the case of PQ, there are The extended primitives edown and eup are N

. imil S h P h he b P P PUT_FORKS = ( put_left —-> put_right -> PHIL
Eg for golf club scheduling: no similar transitions, however PQa shares the atomic (indivisible) and each operates on a set of | put_rignt -> put.left —> PHIL ).
Crogress NOVICE - (NOVICES.act (51) transltlon,jo that is removed from the LTS. semaphore variables whlich rn:l\st b?silnitiaste;ﬂ wfith | IDINERS (N=5) = ( forall[i:1..N]( phil[i]:PHIL ||
= -9 non-negative integer value. edown yee,Sn): i <3 {phil[i].right,phil[ (i+1)3N].left}::

progress EXPERT = (EXPERTS.get[R]) 4 for all i, 1 < i < n, Si>0 then for all i, <3 FORK) )

‘ 1<i<m, 8 =8; — 1 else block execution of /I ) )
m G calling processes eup(S1,...,Sn): if processes iZ2Ziii’ggiﬁffé}’?ié:;ii;%&?ht'
blocked on (S1,...,Sn) then awaken one of them reserve_forks_l/reserve_right_1,reserve_forks_1/

| |IProgressCheck = GOLFCLUB >> {Players.put[R]}. @.

7-A1 b
Q > )b o clse foralli, 1< i< mn, S;:=5S; +1 P DA
( 5 a ) reserve_forks_2/reserve_right_2, reserve_forks_2/

P=(a->b->d->P). @ @ > reserve_left 3

= - - E SEM (N=INITIAL VALUE = SEMA[N], _left 3,

= (c -> Db ->e —> . G’
(‘2‘51(: 25 Q) Kl @ SEMA[v:Int] = (when (v<-Max) wp —> SEMA[v+1] | reserve;f}orrl;ss,earéreesleerfvte,r1ght,3,reserve,forksj/
2 = s 82 = 82 <> when (v>0) down -> SEMA[v-1]). reserve_forks_4/reserve_right_4,reserve_forks_4/
$2 = (a => S2A | ¢ —> S2B), o SEMS1S2 (INITIAL1=3, INITIAL2=3) = (S1:SEM(3) || S2 s reserve left s,
S2A = (¢ -> b ->d ->82C | ¢ -> b -> e -> S2D), > :SEM(3))\{S1.S2.up/Sl.up, S1.S2.up/S2. reserve_forks_5/reserve_right_5,reserve_forks_5/
528 (a => b ->d ->82C | a -—> b —> e -> S2D), “PQ ”PQB < up, S1.S2.down/Sl.down, S1.S2.down/S1. <5 reserve_left_1
S2C = (e => S2 | a -> e —-> S2A), < down}. ).
S2D = (d -> S2 | ¢ -> d -> S2B).



	FSP
	Syntax

	LTS
	Petri Nets
	Reachability Graphs

	Hiding/Labeling
	Bisimulation
	Mutual Exclusion
	Monitors and Semaphores
	Bounded Buffer
	Nested Monitor Problem

	P/T nets
	Deadlocks
	Dining Philosophers Problem

	Coloured Petri Nets
	Semaphores and Extensions
	Dijkstra's Semaphore Operations
	Multidimensional Semaphores of Agerwala
	Inhibitor Nets
	Smokers' Problem
	Simple-minded Solution
	Property (safety)
	Ask first, do later


	Safety and Liveness
	CTL and LTL
	CTL
	Elevator Example 1
	Elevator Example 2

	LTL

	Dynamic Systems
	Golf Club Program
	Adverse Scheduling

	Q7 - A1
	Q5 - Midterm
	Q7 - Midterm
	Alphabet Extension
	Processes
	Properties

	Tut 6 Mutex Example
	Binary Semaphore Question
	Dining Savages
	Simplified Multidimensional Semaphores
	Two Warring Neighbours
	CTL and LTL Examples
	Dining Philosophers with ‘atomic act of picking up both forks’
	A3Q2 - Gas Question
	A3Q3 - Cheese Question
	Burger

