
2SD3 Final v0.2 – The Triumph of Bureaucracy and Vocal Minority: You Shall (Not) Pass Edition

If you’re reading this, please contribute!

REMINDER! This is a template! The cheat sheet
maintainer (.json) intentionally leaves extra space
for you to add your own notes! If something’s
missing, add it yourself! (and if it’s important
enough please contribute!)

FSP

Syntax

// instance prefixing - a:P
SWITCH = (on -> off -> SWITCH).
||TWO_SWITCH = (a:SWITCH || b:SWITCH).

// relabeling - /{new1/old1, new2/old2, ...}.
CLIENT = (call -> wait -> continue -> CLIENT).
SERVER = (request -> service -> reply -> SERVER).
||CLIENT_SERVER = (CLIENT||SERVER)/{call/request,

↪→ reply/wait}.

// process prefixing (mutex) - {a1, ..., ax} :: P
RESOURCE = (acquire -> release -> RESOURCE).
USER = (acquire -> user -> release -> USER).
||RESOURCE_SHARE = (a:USER || b:USER || {a, b}::

↪→ RESOURCE).
// RESOURCE is a single shared instance between

↪→ the two USERs
// for loop syntax
|| SWITCHES (N = 3) = (forall [i:1..N] s[i]:SWITCH

↪→)
// or alternatively
range Seats = 1..3
|| SEATS=(seat[i:1..3]:SEAT).

// hiding operator - \{a1, ..., ax}
// interface operator - @{a1, ..., ax}
// these two do the same thing
USER = (acquire -> use -> release -> USER)\{use}.
USER = (acquire -> use -> release -> USER)@{

↪→ acquire, release}.

// syntax for progress
progress P = {a1, ..., an}

// syntax for high priority
||C = (P||Q)<<{a1, ..., an}.
// syntax for low priority
||C = (P||Q)>>{a1, ..., an}.

// simulating a boolean
const False = 0
const True = 1
range Bool = 0..1

Maker-user example

MAKER = (make -> ready -> MAKER).
USER = (ready -> user -> USER).
||MAKER_USER = (MAKER || USER).

Garden example (maybe move this to a diff
section later)

const N = 4
range T = 0..N
set VarAlpha = {value.{read[T],write[T]}}
VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]

|write[v:T]->VAR[v]).

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT

|end -> TURNSTILE),
INCREMENT = (value.read[x:T]

->value.write[x+1]->RUN)
+VarAlpha.

DISPLAY =(value.read[T]->DISPLAY)+{value.write[T
↪→]}.

||GARDEN = (east:TURNSTILE || west:TURNSTILE ||
↪→ display:DISPLAY

|| {east,west,display}::value:VAR)
/{go /{east,west}.go,

end/{east,west}.end}.

LTS

Petri Nets
Reachability Graphs

Hiding/Labeling
relabeling:
(PROCESS)/{newlabel1/oldlabel1, ..., newlabeln/oldlabeln}
interface: (PROCESS)@{a1...ax} hides all
actions except a1 . . . ax
hiding: (PROCESS) \{a1...an} hides actions
a1...an
{a1, ..., ax} :: P replaces every action label n in
the alphabet of P with the labels a1.n, ... , ax.n.
Thus, every transition (n → X) in the definition
of P is replaced with the transitions
({a1.n, ..., ax.n} −→ X)

Bisimulation
State Bisimilarity – p ≈ q iff whatever action
executed at p can also be executed at q, and vice
versa.
LTS Bisimilarity – P ≈ Q iff each state pt,
reachable from the initial state by a trace t in P
is bisimilar to an appropriate state qt that is
reachable from the initial state by the same trace
t in Q.

Mutual Exclusion
Arbitrary interleaving of read and write actions
leads to interference. Interference bugs are
difficult to locate. We use mutual exclusion to
only give one process access to the shared
resource at a time.

LOCK = (acquire->release->LOCK).
U1 = (acquire -> use -> release -> U1).
U2 = (acquire -> use -> release -> U2).
||SYSTEM = (u1:U1||u2:U2||{u1,u2}::LOCK).

Above allows for lock−→use−→release for either
user but only one of them at a time.

Monitors and Semaphores
Monitor – A threadsafe class where each
function is wrapped by a mutex. Essentially, only
one process may access the class at a time.
Entirely syntactic sugar. Semaphore –
Essentially a mutex with a queue of processes

down(s): if s > 0 then
decrement s

else
block execution of calling process

up(s): if processes blocked on s then
awaken one of them

else
increment s

const Max = 3
range Int = 0..Max
SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]

|when(v>0) down->SEMA[v-1]
).

LOOP = (mutex.down -> critical -> mutex.up -> LOOP
↪→).

||SEMADEMO = (p[1..3]:LOOP || {p[1..3]}::mutex:
↪→ SEMAPHORE(1)).

Bounded Buffer
A buffer with a fixed number of slots

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N]

= (when (i<N) put->COUNT[i+1]
|when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER||BUFFER(5)||CONSUMER).

Nested Monitor Problem

P/T nets
Each place in a P/T net can hold multiple
tokens. Each transition has a weight, w,
associated with it. If it is an input transition,
firing takes w tokens from the input place. If its
an output transition, firing adds w tokens to the
output place. An action can only be fired if
enough input tokens are present in all input

places.

Deadlocks
Dining Philosophers Problem

Simple minded construction:

FORK = (get -> put -> FORK).
PHIL = (think -> right.get -> left.get -> eat ->

↪→ right.put -> left.put -> PHIL).
||DINERS(N = 5) = forall[i : 1..N] (phil[i] : PHIL

↪→ || {phil[i].right, phil[(i % 5) + 1].
↪→ left} :: FORK

Solution 1 – Add asymmetry into the
composition, where 1, 3, 5 always perform
‘left.get -> right.get’, while 2, 4 always perform
‘right.get -> left.get’.

PHIL = (when(i=1|i=3|i=5) think -> left.get ->
↪→ right.get -> eat -> left.put -> right.
↪→ put -> PHIL
|when(i=2|i=4) think -> right.get -> left.

↪→ get -> eat -> right.put -> left.
↪→ put -> PHIL).

Solution 2 – Use a butler to prevent more than 4
philosophers from sitting at the table.

PHIL = (think -> sitdown -> right.get -> left.get
↪→ -> eat -> right.put -> left.put ->
↪→ getup -> PHIL).

BUTLER(K=4) = COUNT[0],
COUNT[i:1..4] = (when(i<K) sitdown -> COUNT[i+1] |

↪→ getup -> COUNT[i-1]).
||DINERS(N=5) ...
||{phil[i:1..N]}::BUTLER(K=4)).

Solution 3 – Use Simultaneity

Only fire a transition if both forks are available

Coloured Petri Nets
“Colours” are simply types of tokens that are
passed around the petri net Paths to transitions
are either labeled with variables or functions that
transform one of the input variables into the
object to remove from a state.

colour PH = with ph1 | ph2 | ph3 | ph4 | ph5
colour Fork = with f1 | f2 | f3 | f4 | f5
LEFT : PH -> FORK, RIGHT : PH -> FORK
var x : PH
fun LEFT x = case of ph1 => f2 | ph2 => f3 | ph3

↪→ => f4 | ph4 => f5 | ph5 => f1
fun RIGHT x = case of ph1 => f1 | ph2 => f2 | ph3

↪→ => f3 | ph4 => f4 | ph5 => f5

Semaphores and Extensions
Dijkstra’s Semaphore Operations
C(s) – initial value of a semaphore variable s
ndown(s) – number of times down(s) was
executed nup(s) – number of times up(s) was
executed npdown(s) – number of times down(s)
was passed
Then we define down and up:
down(s): ndown(s) = ndown(s)+1: if ndown(s)
<= nup(s) + C(s) then npdown(s) = npdown(s)
+ 1;
up(s): if ndown(s) > nup(s) + C(s) then
npdown(s) = npdown(s) + 1; nup(s) = nup(s)+1;

Theorem 1. npdown(s) = min(ndown(s), C(s) +
nup(s))

Multidimensional Semaphores of
Agerwala
edown(s1, . . . , sn, sn+1, . . . , sn+m: if for all

i, 1 ≤ i ≤ n, si > 0 and for all
j, 1 ≤ j ≤ m,Sn+j = 0 then for all

i, 1 ≤ i ≤ n, si = si − 1 else block execution of
calling processes
eup(s1, s2, . . . , sn: if processes blocked on

(s1, . . . , sn) then awaken al of them else for all
i, i ≤ i ≤ n, si = si + 1

Inhibitor Nets
Add a circle to the transition side of an arc to
make it an inhibitor arc Now the transition can
only be fired if the places connected by inhibitor
arcs are empty.

Smokers’ Problem
3 Smokers each have an unlimited type of either
tobacco, cigarette paper, matches. 2 ingredients
are placed on the table, the smoker with the third
ingredient needed should pick up the ingredients,
make a cigarette, and smoke it. Next set of
ingredients won’t be placed until smoking is
completed.

Simple-minded Solution

SMOKER_T=(get_paper -> get_match->roll_cigarrette
↪→ -> smoke_cigarrette -> SMOKER_T).

SMOKER_P=(get_tobacco -> get_match->
↪→ roll_cigarrette -> smoke_cigarrette ->
↪→ SMOKER_P).

SMOKER_M=(get_tobacco -> get_paper->
↪→ roll_cigarrette -> smoke_cigarrette ->
↪→ SMOKER_M).

TOBACCO = (delivered -> picked -> TOBACCO).
PAPER = (delivered -> picked -> PAPER).
MATCH = (delivered -> picked -> MATCH).

AGENT_T = (can_deliver -> deliver_paper ->
↪→ deliver_match -> AGENT_T).

AGENT_P = (can_deliver -> deliver_match ->
↪→ deliver_tobacco -> AGENT_P).

AGENT_M = (can_deliver -> deliver_tobacco ->
↪→ deliver_paper -> AGENT_M).

RULE = (can_deliver -> smoking_completed -> RULE)
↪→ .

||SMOKERS = (s_t:SMOKER_T || s_p:SMOKER_P || s_m:
↪→ SMOKER_M).

||RESOURCES = ({s_m,s_p}::TOBACCO || {s_t,s_m}::
↪→ PAPER || {s_t,s_p}::MATCH).

||AGENT_RULE = ({s_m,s_p,s_t}::RULE || {s_m,s_p}::
↪→ AGENT_T || {s_m,s_t}::AGENT_P ||

{s_t,s_p}::AGENT_M).

||CIG_SMOKERS = (SMOKERS || RESOURCES ||
↪→ AGENT_RULE)/

{s_t.get_paper/s_t.picked,
s_m.get_paper/s_m.picked,
s_p.get_paper/s_p.picked,
s_t.deliver_paper/s_t.delivered,
s_m.deliver_paper/s_m.delivered,
s_p.deliver_paper/s_p.delivered,
s_t.smoking_completed/s_t.smoke_cigarrette,
s_m.smoking_completed/s_m.smoke_cigarrette,
s_p.smoking_completed/s_p.smoke_cigarrette}.

Property (safety)

property CORRECT_PICKUP =
(s_t.get_paper->s_t.get_match->CORRECT_PICKUP
|s_p.get_tobacco->s_p.get_match->CORRECT_PICKUP
|s_m.get_tobacco->s_m.get_paper->CORRECT_PICKUP).

Ask first, do later

SMOKER_T=(no_tobacco -> get_paper -> get_match->
↪→ roll_cigarrette ->

smoke_cigarrette -> SMOKER_T)
SMOKER_P=(no_paper -> get_tobacco -> get_match->

↪→ roll_cigarrette ->
smoke_cigarrette -> SMOKER_P)
SMOKER_M=(no_match -> get_tobacco -> get_paper->

↪→ roll_cigarrette ->
smoke_cigarrette -> SMOKER_T)
TOBACCO = (delivered -> picked -> TOBACCO)
PAPER = (delivered -> picked -> PAPER)
MATCH = (delivered -> picked -> MATCH)
AGENT_T = (can_deliver -> no_tobacco ->

↪→ deliver_paper->deliver_match->AGENT_T)
AGENT_P = (can_deliver -> no_paper ->

↪→ deliver_match->deliver_tobacco->AGENT_P
↪→)

AGENT_M = (can_deliver -> no_match ->
↪→ deliver_tobacco->deliver_paper->AGENT_M
↪→)

RULE = (can_deliver -> smoking_completed -> RULE)

SMOKERS = s_t:SMOKER_T || s_p:SMOKER_P || s_m:
↪→ SMOKER_M

RESOURCES = {s_m,s_p}::TOBACCO || {s_t,s_m}::PAPER
↪→ || {s_t,s_p}::MATCH

AGENT_RULE = {s_m,s_p,s_t}::RULE || {s_m,s_p}::
↪→ AGENT_T || {s_m,s_t}::AGENT_P || {s_t,
↪→ s_p}::AGENT_M

CIG_SMOKERS = (SMOKERS || RESOURCES || AGENT_RULE)
↪→ /

{s_t.get_paper/s_t.picked,
s_m.get_paper/s_m.picked,
s_p.get_paper/s_p.picked,
s_t.deliver_paper/s_t.delivered,
s_m.deliver_paper/s_m.delivered,
s_p.deliver_paper/s_p.delivered,
s_t.smoking_completed/s_t.smoke_cigarrette,
s_m.smoking_completed/s_m.smoke_cigarrette,
s_p.smoking_completed/s_p.smoke_cigarrette}.

Safety and Liveness

Safety – asserts that nothing bad happens

Safety Property P – defines a process that
asserts any trace including the actions in the
alphabet of P is accepted by P , otherwise they
are transitions to the ERROR state, safety checks
are compositional hence they should be composed
with the appropriate (sub)system

Liveness – asserts that something good
eventually happens

Progress Property – asserts that it is always
the case that a particular action is eventually
executed, opposite of starvation, progress checks
are not compositional hence they should be
conducted after safety checks

Starvation – situation in which an action is
never executed

Terminal Set of States – set of states in which
every state is reachable from every other state in
the set and there is no transition from within to
set to any state outside the set

Priority – specifies actions that have a
higher/lower priority than any other action in the
alphabet of some state

CTL and LTL
CTL
A: along all paths
E: exists a path
X: next state
F: some future state
G: all future states
U: until (“killer” event must happen)
W: weak until (“killer” event may never happen).
In CTL, must start with path operator (A/E). W
in CTL: A[pW q] ≡ A[pU q] ∨ AG p (same with
E).
Common Pattenrs AXϕ - in every next state.
EXϕ - in some next state.
AGϕ - All computation paths beginning with s
the property ϕ holds Globally.
EGϕ - There Exists a path beginning in s such
that ϕ holds Globally along the path.
AFϕ - For All computation paths beginning with
s there will be some Future state where ϕ holds.
EFϕ - There Exists a computation bath
beginning in s such that ϕ holds in some Future
states.
A[ϕ1Uϕ2] - All computation paths beginning in s
satisfy that ϕ1 Until ϕ2 holds.
E[ϕ1Uϕ2] - There Exists a computation path
beginning in s such that ϕ1 Until ϕ2 holds on it.
The future includes the present.

Equivalences ¬AFϕ ≡ EG¬ϕ
¬EFϕ ≡ AG¬ϕ
¬AXϕ ≡ EX¬ϕ
AFϕ ≡ A[⊤Uϕ]
EFϕ ≡ E[⊤Iϕ]
Elevator Example 1

“An upwards travelling elevator at the second
floor does not change direction when it has
passengers wishing to go to the fifth floor”
CTL: AG(floor = 2 ∧ direction =
up ∧ ButtonPressed5 ⇒ A[direction =
up U floor = 5]).

Elevator Example 2

“The elevator can remain idle on the third floor
with its doors closed”
CTL: AG((floor = 3 ∧ idle ∧ door = closed) ⇒
EG(floor = 3 ∧ idle ∧ door = closed))

LTL
⊥ - false, ⊤ - true Other symbols mean the same
as above. A set of paths satisfies ϕ if every path
in the set satisfies ϕ
Equivalences ¬Gϕ ≡ F¬ϕ
¬Fϕ ≡ G¬ϕ
¬Xϕ ≡ X¬ϕ
F (ϕ ∨ ψ) ≡ Fϕ ∨ Fψ
G(ϕ ∧ ψ) ≡ Gϕ ∧ Gψ
Fϕ ≡ ⊤Uϕ
Gϕ ≡ ⊥Rϕ
ϕUψ ≡ ϕWψ ∧ Fψ
ϕWψ ≡ ϕUψ ∨ Gϕ
ϕWψ ≡ ψR(ϕ ∨ ψ)
ϕRψ ≡ ψW (ϕ ∧ ψ)

Dynamic Systems
Golf Club Program
Players at a golf club borrow and then return golf
balls. Different players need different numbers of
balls. How do we model the infinite stream of
players? We can only model infinite behaviours.

Adverse Scheduling
Intentionally schedule priorities to try to break
things
Eg for golf club scheduling:

progress NOVICE = {NOVICES.get[R]}
progress EXPERT = {EXPERTS.get[R]}
||ProgressCheck = GOLFCLUB >> {Players.put[R]}.

Q7 - A1

P = (a -> b -> d -> P).
Q = (c -> b -> e -> Q).
||S1 = (P || Q).

S2 = (a -> S2A | c -> S2B),
S2A = (c -> b -> d -> S2C | c -> b -> e -> S2D),
S2B = (a -> b -> d -> S2C | a -> b -> e -> S2D),
S2C = (e -> S2 | a -> e -> S2A),
S2D = (d -> S2 | c -> d -> S2B).

For the above FSPs, they both share the same
LTS diagram (LTS version of the right petri net),
however, since ||S1 has simultaneous actions, its
petri net will be show simultaneity whereas S2
will not.

Q5 - Midterm
A central computer is connected to remote
terminals, with seats for concert hall. Clients
choose a free seat and clerk enters the seat into
the system and gives a ticket. We need to prevent
double booking while letting clients choose any
available seat.

const False = 0
const True = 1
range Bool = False..True
SEAT = SEAT[False],
SEAT[reserved:Bool]

= (reserve -> SEAT[True]
| query[reserved] -> SEAT[reserved]
| when (reserved) reserve -> ERROR // error

↪→ of reserved twice
).

range Seats = 0..1
||SEATS = (seat[Seats]:SEAT).

LOCK = (acquire -> release -> LOCK).

TERMINAL = (choose[s:Seats] -> acquire
-> seat[s].query[reserved:Bool]
-> (when(!reserved)seat[s].reserve ->

↪→ release -> TERMINAL
| when(reserved) release -> TERMINAL)
).

set Terminals = {a, b}
||CONCERT = (Terminals:TERMINAL || Terminals::

↪→ SEATS || Terminals::LOCK).

Q7 - Midterm

P1 = (a -> b -> c -> P1 | a -> c -> b -> P1).
P2 = (a -> (b -> c -> P2 | c -> b -> P2)).
Q = (b -> c -> Q).

||P1Q = (P1 || Q).
||P2Q = (P2 || Q).

For P1 there are two possible paths which have
an a transition. For P2, it starts with one a
transition, so both the starting states are
equivalent in this case. In both branches of P1,
you either do b → c → P1 or c → b → P1. For
P2, it splits into two possible paths, b → c → P2
or c → b → P2, which is the same as the traces
for P1. Therefore P1 and P2 are equivalent.
For ||P1Q and ||P2Q,both P1 and Q, and P2 and
Q, share b → c. In P1 and Q, this becomes a
shared action and both P1 and Q will want to use
the same transitions at the same time (deadlock).
For ||P2Q, the FSP can choose to go in the
alternate direction instead of waiting for Q to
finish, so this one would not have a deadlock
whereas ||P1Q will have one.

Alphabet Extension
Processes

P = (a -> b -> P).
Q = (c -> d -> Q).
Qa = (c -> d -> Q) + {b}.

When taking the composition of ||PQ and ||PQa,
we take the union of both processes and remove
duplicate transitions. In the case of PQ, there are
no similar transitions, however PQa shares the b
transition, so that is removed from the LTS.

Properties
With properties, whenever you add more
transitions through alphabet extension, you need
to apply this transition to every state and use it
as a transition to an error state.

Tut 6 Mutex Example
Workers in an office share a printer. The printer
is able to print any number of jobs before it runs
out of toner. This is replaced by a technician
when necessary.

const J=3
range Jobs = 0..J
// j Represents toner
PRINTER = PRINTER [3],
PRINTER[j: Jobs] = (when j==0 replace_toner->

↪→ PRINTER[J]
|when j>0 print_job -> PRINTER[j-1]).
USER = (print_job->USER).
const M = 2
range Users = 0..M
||USERS = (forall[i:Users] user [i]:USER).
TECHNICIAN=(replace_toner->TECHNICIAN).
||OFFICE=(USERS||PRINTER||TECHNICIAN)
/{user[Users].print_job/print_job}.

Binary Semaphore Question
In an operating system, a binary semaphore is
used to control access to the console. The console
is used by user and system processes. Write down
a model with FSP for this system. Discuss when
user processes may be denied access to the
console.

BSEMA = (up -> down -> BSEMA).
PROCESS = (console.up -> console.down -> PROCESS).
set Processes = {user[1..2],system[1..2]}
OS = (Processes:PROCESS || Processes::console:

↪→ BSEMA)>>{user}.

Dining Savages
The dining savages: A tribe of savages eats
communal dinners from a large pot capable of
holding M servings of stewed missionaries. When
a savage wants to eat, he helps himself from the
pot unless it is empty, in which case he waits
until the cook refills the pot. If the pot is empty,
the cook refills the pot with M servings. The
behavior of the savages and the cook is described
by

SAVAGE = (get_serving->SAVAGE).
COOK = (fill_pot->COOK).

Model the behaviour of the pot and of the system
as FSP processes.

const M = 5
SAVAGE = (getserving -> SAVAGE).
COOK = (fillpot -> COOK).
POT = SERVINGS[0],
SERVINGS[i:0..M] = (when (i==0) fillpot ->

↪→ SERVINGS[M] | when (i>0) getserving ->
↪→ SERVINGS[i-1]).

||SAVAGES = (SAVAGE || COOK || POT).

Simplified Multidimensional
Semaphores
The extended primitives edown and eup are
atomic (indivisible) and each operates on a set of
semaphore variables which must be initiated with
non-negative integer value. edown(S1,...,Sn): if
for all i, 1 ≤ i ≤ n, Si>0 then for all i,
1 ≤ i ≤ n, Si := Si − 1 else block execution of

calling processes eup(S1,...,Sn): if processes
blocked on (S1,...,Sn) then awaken one of them
else for all i, 1 ≤ i ≤ n, Si := Si + 1

SEM(N=INITIAL_VALUE = SEMA[N],
SEMA[v:Int] = (when (v<=Max) up -> SEMA[v+1] |

↪→ when (v>0) down -> SEMA[v-1]).
SEMS1S2(INITIAL1=3, INITIAL2=3) = (S1:SEM(3) || S2

↪→ :SEM(3))\{S1.S2.up/S1.up, S1.S2.up/S2.
↪→ up, S1.S2.down/S1.down, S1.S2.down/S1.
↪→ down}.

Two Warring Neighbours
Model this algorithm for two neighbours n1 and
n2. Specified the required safety properties for
the field and check that it does indeed ensure
mutually exclusive access. Specify the required
progress properties for the neighbours such that
they both get to pick berries given a fair
scheduling strategy.

const False = 0
const True = 1
range Bool = False..True
set BoolActions = {setTrue, setFalse, [False], [

↪→ True]}
BOOLVAR = VAL[False],
VAL[v:Bool] = (setTrue -> VAL[True]

|setFalse -> VAL[False]
|[v] -> VAL[v]
).

||FLAGS = (flag1:BOOLVAR || flag2:BOOLVAR).
NEIGHBOUR1 = (flag1.setTrue -> TEST),
TEST = (flag2[b:Bool] ->

if(b) then
(flag1.setFalse -> NEIGHBOUR1)

else
(enter -> exit -> flag1.

↪→ setFalse ->
↪→ NEIGHBOUR1)

)+{{flag1,flag2}.BoolActions}.
NEIGHBOUR2 = (flag2.setTrue -> TEST),
TEST = (flag1[b:Bool] ->

if(b) then
(flag2.setFalse -> NEIGHBOUR2)

else
(enter -> exit-> flag2.setFalse -> NEIGHBOUR2)

)+{{flag1,flag2}.BoolActions}.
property SAFETY = (n1.enter -> n1.exit -> SAFETY |

↪→ n2.enter -> n2.exit -> SAFETY).
||FIELD = (n1:NEIGHBOUR1 || n2:NEIGHBOUR2 || {n1,

↪→ n2}::FLAGS || SAFETY).
progress ENTER1 = {n1.enter}
progress ENTER2 = {n2.enter}
||GREEDY = FIELD<<{{n1,n2}.{flag1,flag2}.setTrue}.

CTL and LTL Examples
If the process is enabled infinitely often, then it
runs infinitely often.

GF enabled ⇒ GF running

AG(AF enabled) ⇒ AG(AF running)

A passenger entering the elevator on 5th floor
and pushing 2nd-floor button will never reach 6th
floor, unless 6th-floor button is already lit or
somebody will push it, no matter if she/he
entered an upwards or upward travelling elevator.

AG(floor = 5 ∧ ButtonPressed2 ⇒

A[¬floor = 6UButtonPressed6])

Dining Philosophers with ‘atomic
act of picking up both forks’

FORK = (reserve_right -> take_right -> put_right
↪→ -> FORK

| reserve_left -> take_left -> put_left -> FORK).
PHIL = (think -> reserve_forks -> USE_FORKS).
USE_FORKS = (take_right -> take_left -> eat ->

↪→ PUT_FORKS
| take_left -> take_right -> eat -> PUT_FORKS),
PUT_FORKS = (put_left -> put_right -> PHIL
| put_right -> put_left -> PHIL).
||DINERS(N=5) = (forall[i:1..N](phil[i]:PHIL ||

↪→ {phil[i].right,phil[(i+1)%N].left}::
↪→ FORK))

/{
reserve_forks/right.reserve_right,
reserve_forks/left.reserve_left,
reserve_forks_1/reserve_right_1,reserve_forks_1/

↪→ reserve_left_2,
reserve_forks_2/reserve_right_2,reserve_forks_2/

↪→ reserve_left_3,
reserve_forks_3/reserve_right_3,reserve_forks_3/

↪→ reserve_left_4,
reserve_forks_4/reserve_right_4,reserve_forks_4/

↪→ reserve_left_5,
reserve_forks_5/reserve_right_5,reserve_forks_5/

↪→ reserve_left_1
}.

A3Q2 - Gas Question

const N = 3 //number of customers
const M = 2 //number of pumps
range C = 1..N
range P = 1..M
range A = 1..2 //Amount of money or Gas
CUSTOMER = (prepay[a:A]->gas[x:A]->
if (x==a) then CUSTOMER else ERROR).
CASHIER = (customer[c:C].prepay[x:A]->start[P][c][

↪→ x]->CASHIER).
PUMP = (start[c:C][x:A] -> gas[c][x]->PUMP).
DELIVER = (gas[P][c:C][x:A]->customer[c].gas[x]->

↪→ DELIVER).
||STATION = (CASHIER || pump[1..M]:PUMP || DELIVER

↪→)
/{pump[i:1..M].start/start[i],
pump[i:1..M].gas/gas[i]}.
||GASSTATION = (customer[1..N]:CUSTOMER ||STATION)

↪→ .
// part b
range T = 1..2
property FIFO = (customer[i:T].prepay[A] -> PAID[i

↪→]),
PAID[i:T] = (customer[i].gas[A] -> FIFO
|customer[j:T].prepay[A] -> PAID[i][j]),
PAID[i:T][j:T]= (customer[i].gas[A] -> PAID[j]).
||CHECK_FIFO = (GASSTATION || FIFO).

A3Q3 - Cheese Question

set Bold = {bold[1..2]}
set Meek = {meek[1..2]}
set Customers = {Bold,Meek}
CUSTOMER = (getcheese->CUSTOMER).
COUNTER = (getcheese->COUNTER).
||CHEESE_COUNTER = (Customers:CUSTOMER ||

↪→ Customers::COUNTER).

Burger
A cook puts burgers in a pot. A client checks if
there is at least one burger in the pot, and if so,
the client must take one.
Trace to error: fill[2], c2.check, fill[1], c1.check,
c2.get, c1.get. Part b change pot to be:

POT = POT[0]
POT[p: Burgers] = (when (p>0) check -> get -> POT[

↪→ p-1] | fill[n: Burgers] -> POT[n]).

	FSP
	Syntax

	LTS
	Petri Nets
	Reachability Graphs

	Hiding/Labeling
	Bisimulation
	Mutual Exclusion
	Monitors and Semaphores
	Bounded Buffer
	Nested Monitor Problem

	P/T nets
	Deadlocks
	Dining Philosophers Problem

	Coloured Petri Nets
	Semaphores and Extensions
	Dijkstra's Semaphore Operations
	Multidimensional Semaphores of Agerwala
	Inhibitor Nets
	Smokers' Problem
	Simple-minded Solution
	Property (safety)
	Ask first, do later

	Safety and Liveness
	CTL and LTL
	CTL
	Elevator Example 1
	Elevator Example 2

	LTL

	Dynamic Systems
	Golf Club Program
	Adverse Scheduling

	Q7 - A1
	Q5 - Midterm
	Q7 - Midterm
	Alphabet Extension
	Processes
	Properties

	Tut 6 Mutex Example
	Binary Semaphore Question
	Dining Savages
	Simplified Multidimensional Semaphores
	Two Warring Neighbours
	CTL and LTL Examples
	Dining Philosophers with ‘atomic act of picking up both forks’
	A3Q2 - Gas Question
	A3Q3 - Cheese Question
	Burger

