



```

if d[i][j] > d[i][k] + d[k][j]:
    d[i][j] = d[i][k] + d[k][j]
return d
def init_d(G):
    n = G.number_of_nodes()
    d = [[float("inf")] for j in range(n)] for i in
    range(n)
    for i in range(n):
        for j in range(n):
            if G.are_connected(i, j):
                d[i][j] = G.w(i, j)
            d[i][j] = 0
    return d

A*
def a_star(G, s, d, h):
    pred = {} # Predecessor dictionary
    dist = {} # Distance dictionary
    marked = {} # Marked dictionary
    Q = min_heap.MinHeap([()])
    nodes = list(G.adj.keys())
    # Init to inf
    for node in nodes:
        Q.insert(min_heap.Element(node, float("inf")))
        dist[node] = float("inf")
        marked[node] = False
    # Set start distance to 0
    Q.decrease_key(s, 0)
    dist[s] = 0
    # Meat of the algorithm
    while not (Q.is_empty() or marked[d]):
        # extract the next minimum element and mark it
        current_element = Q.extract_min()
        current_node = current_element.value
        marked[current_node] = True
        # update keys by distance + heuristic
        for neighbour in G.adj[current_node]:
            # dont add the heuristic to the shortest
            # path
            # update it in the score of the min_heap
            if not marked[neighbour]:
                if dist[current_node] + G.w(current_node,
                neighbour) < dist[neighbour]:
                    # add heuristic to weight in queue
                    Q.decrease_key(neighbour, dist[
                    current_node] + G.w(current_node,
                    neighbour) + h.get(neighbour))
                    dist[neighbour] = dist[current_node] + G.w(
                    current_node, neighbour)
                    # update the predecessor dictionary
                    pred[neighbour] = current_node
    return (pred, dist[d])

```

## Dynamic Programming

### Why Use Dynamic Programming?

Dynamic programming splits a recursive problem into sub problems, and stores the results of these sub problems. This helps reduce the overall complexity of the function since the function does not need to waste time calculating something that has already been calculated.

**Top Down** Pros: 1. Solves fewer sub problems. 2. Only solves the problems it needs to. Cons: 1. Recursive in nature. 2. When solving problems, you're still solving the previous case until you get to a stored case or the base case.

**Bottom Up** Pros: 1. Iterative in nature. 2. Quick lookup after problems have been solved. Cons: 1. Solves unnecessary subproblems. 2. You need to solve all the subproblems.

### Subset Sum

$s(i, t)$  means you are given a list of numbers  $i$  and want to see if you can sum them to a value  $t$ . Recursive method:

- $S(i, t) = S(i-1, t)$  or  $S(i-1, t-n[i-1])$
- Case 1: You use  $n[i-1]$  (where  $n$  is the list of numbers)

• Case 2: You don't use  $n[i-1]$

Bottom-up method:

- $sp(i, j) = sp(i-1, j)$  or  $sp(i-1, j - nums[i-1])$
- Space complexity:  $\theta(nt) \rightarrow \theta(t)$  If all you care about is T or F, you can delete the row you are finished with every time you move to the next row, space complexity goes down to  $O(t)$ , where  $t$  is the length of the row

• Time complexity:  $\theta(nt)$

• Iterative; solves all problems

• Bottom-up = you start from the base case (bottom) and build upwards to your solution

Top-down method:

- Same as recursive method, solves all problems you need to solve, recursion generally loses to iterative
- But for lists with a high max value, top-down beats bottom-up in time
- Top-down = you start with your solution and break it down into sub problems

```

def subset_sum_dynamic(numbers, target):
    sp = [[False for j in range(target + 1)] for i
    in range(len(numbers) + 1)]
    d = {}
    for i in range(len(numbers) + 1):
        sp[i][0] = True
        for i in range(1, len(numbers) + 1):
            for j in range(1, target + 1):
                if numbers[i-1] > j:
                    sp[i][j] = sp[i-1][j]
                if sp[i-1][j]:
                    d[i, j] = ((i-1, j), False)
                else:
                    sp[i][j] = sp[i-1][j] or sp[i-1][j -
                    numbers[i-1]]
                    if sp[i-1][j] == ((i-1, j), False):
                        d[i, j] = ((i-1, j - numbers[i-1]),
                        True)
    if sp[len(numbers)][target]:
        print(recover_solution(d, numbers, target))
    return sp[len(numbers)][target]
def subset_sum_top_down(numbers, target):
    sp = {}
    for i in range(len(numbers) + 1):
        sp[i, 0] = True
    for i in range(target + 1):
        sp[0, i] = i == 0
    top_down_aux(numbers, len(numbers), target, sp)
    print(len(sp))
    return sp[len(numbers), target]
def top_down_aux(numbers, i, j, sp):
    if numbers[i-1] > j:
        if not (i-1, j) in sp:
            top_down_aux(numbers, i-1, j, sp)
            sp[i, j] = sp[i-1, j]
        else:
            if not (i-1, j) in sp:
                top_down_aux(numbers, i-1, j, sp)
            if not (i-1, j - numbers[i-1]) in sp:
                top_down_aux(numbers, i-1, j - numbers[i-1],
                j)
            sp[i, j] = sp[i-1, j] or sp[i-1, j -
            numbers[i-1]]
    return sp

```

### Splitting Strings

This problem uses a function to split a string into substrings of valid english words. Using the Trie data structure, an `add_word()` function is used to recursively build words from a text file. It uses the `can_split()` function to split the strings to create substrings and to check if they are valid strings. Note that the DP approach for this problem results in an almost linear time complexity.

- Time complexity:  $O(m)$  where  $m$  is the length of the longest word
- Space complexity:  $O(mn)$  where  $n$  is the length of the string

```

def can_split_dynamic(s):
    sp = [[True]]
    d = {}
    for i in range(len(s)):
        b = False
        for j in range(i, max(i-22, -1), -1):
            b = (sp[j] and t.check_word(s[j:i+1]))
            if b:
                d[i] = j
                break
            sp.append(b)
    return (sp, d)

```

### Tries

```

class Trie:
    def __init__(self):
        self.is_word = False
        self.children = [None for _ in range(26)]
    def add_word(self, word):
        if word == "":
            self.is_word = True
        else:
            if self.children[letter_index(word[0])] == None:
                self.children[letter_index(word[0])] = Trie()
            self.children[letter_index(word[0])].add_word(word[1:])
    def check_word(self, word):
        if word == "":
            return self.is_word
        else:
            if self.children[letter_index(word[0])] == None:
                return False
            return self.children[letter_index(word[0])].check_word(word[1:])
    def get_height(self):
        heights = []
        for child in self.children:
            if child != None:
                heights.append(child.get_height())
        if heights == []:
            return 1
        return 1 + max(heights)
    def get_num_words(self):
        num_words = []

```

```

        for child in self.children:
            if child != None:
                num_words.append(child.get_num_words())
        if self.is_word:
            return 1 + sum(num_words)
        return sum(num_words)
    def create_random_word(self):
        index_list = []
        for i in range(26):
            if self.children[i] != None:
                index_list.append(i)
        if self.is_word:
            index_list.append(-1)
        j = random.randint(0, len(index_list) - 1)
        if j == -1:
            return ""
        return char_from_index(j) + self.children[j].create_random_word()
    def letter_index(letter):
        return ord(letter) - 97
    def char_from_index(i):
        return chr(i+97)

```

### Lab Takeaways

#### Lab 2

Covers the bad sorts (bubble, selection, insertion)

- Despite all the bad algorithms having the same worst-case performance, in the real world they performed significantly differently, with bubble sort being very bad and selection sort being the best (even though insertion sort should be theoretically faster)
- "Optimizing" an algorithm might make the runtime worse, if the optimization being performed ends up having more overhead than the non-optimized version
- Selection sort does not change with more or less disorder in the array, while insertion sort and bubble sort both perform better with a more ordered array.

#### Lab 3

Covers heap < merge < quick sort.

- In general, quicksort is fastest, with mergesort and heapsort trailing behind for one-off sorting.
- When arrays are near-sorted, the performance of quicksort falls off of a cliff
- Modifications to quicksort (dual quicksort) improve performance, up to a limit
- Bottom-up mergesort tends to be a good bit faster than top-down mergesort, as the recursive splitting step is removed
- Insertion sort is faster than mergesort and quicksort for very small lists (less than 10-15 elements in the list)

#### Lab 4

- As the proportion of edges increases, the probability of a cycle occurring in the graph also increased.
- The probability of all edges in a graph being connected follows a sigmoid curve

#### Lab 5

- The set of nodes in a minimum vertex cover and the set of nodes in a maximum independent set can be summed to equal the set of all nodes in a graph.

#### Lab 6

- Red-black trees have approximately half the height of a naive binary search tree, when working with random data.
- Binary search trees perform significantly worse with ordered data, versus random data, due to the lack of balancing. Red-black trees have relatively constant performance no matter the degree of disorder.
- If insertion speed is significantly more important than maintaining a perfectly balanced search tree, naive BSTs may be viable, but in most cases RBTs are preferred.

#### Lab 7

- Height of XC3-Tree can be determined from its degree  $i$  using the equation  $h(i) = \lceil i/2 \rceil$ , or by leaf node  $n$  where  $h = \log_{\phi}(n)$
- Number of nodes in an XC3-Tree with degree  $i$  can be found using Fibonacci sequence where  $nodes(i) = nodes(i-1) + nodes(i-2)$
- "Proof": Suppose  $x \in \{nodes(i)\}, i \in \mathbb{N}$  and  $\phi = \frac{1+\sqrt{5}}{2}$ , the golden ratio. Then,  $h(x) = \log_{\phi}(x)$  Fibonacci Sequence

$$= \log_{\phi}(nodes(x-1) + nodes(x-2))$$

By the definition of logarithms, the above equality holds because we are dividing the Fibonacci sequence by  $\phi$ , until it is equal to 1. Since the number of nodes in a XC3-Tree is the Fibonacci sequence—as derived at the beginning of this experiment—the division of each node by  $\phi$ , by the definition of the golden ratio, represents the number of Fibonacci numbers we go through to get to the root node. So,  $\log_{\phi}(x)$  gives us the number of times we divided by  $\phi$  to get to 1. Since the number of times we divide by  $\phi$  represents the number of Fibonacci numbers we go through to get first base case (which is the root node in the XC3 tree), The height of the tree must be  $\log_{\phi}(n)$  for some leaf node  $n$ . Now, since we have shown that the height of the XC3-tree is  $\log_{\phi}(n)$ , we can write that the time complexity of an XC3-tree is  $O(\log_{\phi}(n))$

because of the change of base properties of the logarithm.

### Final Lab

- Bellman-Ford's approximation algorithm performs significantly better than normal Bellman-Ford, while generally not being affected by the reduced number of relaxations
- Dijkstra's approximation algorithm performs poorly when the number of relaxations is small compared to the size and density of the graph
- Empirically testing  $A^*$  on random data is hard, but using real-world data makes it easier
- Straight-line approximation is a good heuristic for  $A^*$  on real-world data
- Use  $A^*$  when we know the ending node, and have a good heuristic to work with.