
Final Crib Sheet v0.2 – Bocchi The ROCK Edition

General Notes
• The constant factor matters!
• Small numbers of trials = higher variability,

therefore run a large number of trials to reduce
variability

• Amortization: when the worst case happens
rarely, but is necessary for the normal case to
occur (eg allocating more memory for a static
array after it’s filled)

Optimizations

• Put the options most likely to evaluate as true
earlier in the if/else chain to reduce the
number of checks the computer does

• When moving an element in a list, instead of
swapping each pair of elements, performing 2
operations for each i, we keep a variable for i
and shift values down as needed, only inserting
the element into position at the very end.

• Memoization can reduce the runtime of
otherwise exponential (e.g. O(2n)) recursive
algorithms to linear by simply storing the
results of previous function calls.

List and Dict operations
List operations

• A list is represented as an array; the largest
costs come from growing beyond the current
allocation size, or from inserting or deleting
somewhere near the beginning

• Copy: O(n), Append: Worst case O(n) and
Amortized O(1), Insert: O(n), Delete: O(n),
length: O(1), min or max: O(n)

• “The worst case of this is amortized across
some constant time operation so the total
amount is still linear.”

• Lists grow at full capacity, doubling it’s size,
and shrink at 1/4 capacity, halving it’s size.

Dictionary operations

• Python uses a hashmap for its dictionaries; you
can have collisions leading to worstcase O(n),
but its usually O(1) w/ no collisions

• get: Avg O(1)/Worst O(n), set: Avg
O(1)/Worst O(n), delete: Avg O(1)/Worst
O(n).

• Dicts resize at 2/3 load.

Good Sorts
Mergesort

Divide array in half recursively, until it is down
to 1 element. Merge array together like a zipper.

Time Complexity: O(n log n)
Memory Complexity: O(N)

Top-down vs Bottom-up TL;DR

Top-down uses recursion: starts at top of tree
and proceeds downwards. Bottom-up does not
use recursion: starts at bottom of tree and
iterates over pieces moving upwards.

Top-down

Traditional recursive approach

def mergesort(L):
if len(L) <= 1:
return

mid = len(L) // 2
left, right = L[:mid], L[mid:]

mergesort(left)
mergesort(right)
temp = merge(left, right)

for i in range(len(temp)):
L[i] = temp[i]

def merge(left, right):
L = []
i = j = 0

while i < len(left) or j < len(right):
if i >= len(left):

L.append(right[j])
j += 1

elif j >= len(right):
L.append(left[i])
i += 1

else:
if left[i] <= right[j]:

L.append(left[i])
i += 1

else:
L.append(right[j])
j += 1

return L

Bottom-up

Pass through array, merging as we go to double
size of sorted subarrays. Keep performing the
passes and merging subarrays, until you do a
merge that encompasses the whole array.
Generally more efficient than top-down, since
recursive calls are expensive.

def mergesort2(L):
if len(L) < 2:
return L

i = 1
while i < len(L):
j = 0
while j < len(L):
L[j:j+i*2] = merge(L[j:j+i], L[j+i:j+i*2])
j += i*2

i *= 2
pass

Quicksort
1. Shuffle array to reduce impact of order on

sorting speed
2. Pick first element of array as pivot
3. Create two sub arrays from remaining

elements, one selecting those smaller, one
selecting those larger. Put them on either side
of the pivot

4. Recurse for each side of the pivot until
everything is sorted.

def quicksort(L):
copy = quicksort_copy(L)
for i in range(len(L)):
L[i] = copy[i]

def quicksort_copy(L):
if len(L) < 2:
return L

pivot = L[0]
left, right = [], []
for num in L[1:]:
if num < pivot:
left.append(num)

else:
right.append(num)

return quicksort_copy(left) + [pivot] +
↪→ quicksort_copy(right)

• Fastest for disordered arrays, slowest for
already sorted arrays

• Randomize array or select a random pivot to
prevent worst case. (Best choice of a pivot is
the median)

• Best case: The partitions are always of equal
size : Ω(N log N). Recurrence relation is
T (n) = 2T (n/2) + cn.

• Worst case: One partition is always of size 0
(if the array is already sorted and we are

picking pivots from the ends) : O(N2).
Recurrence relation is
T (n) = T (n − 1) + T (0) + cn.

• Average case: 1.39 N log N ∈ Θ(N log N)
• Uses less memory than merge sort. Space

complexity O(n)

Heapsort
• Heaps/PQs are binary trees such that: (1).

parents are always greater than both children,
(2). tree is complete, (3). (assuming
0-indexing) the parent of node i is at array
index (i + 1)//2, the left child is at
2(i + 1) − 1, and right at 2(i + 1).

• To build a heap/PQ from a list, call
heapify()/sink down() in a loop, starting at the
first non-leaf node (index len(arr)//2-1) to the
root node. This step is O(n). After this, you
can call extract max/min() repeatedly to obtain
sorted list

• In regular usage the best, worst, and avg. case
is O(n log n)

• bottom up heapify is O(n) while top down is
O(nlogn)

• Along with storing the PQ data as an array, we
can store the value/index pair in a dict, giving
us amortized O(log n) incr/decr key()

Graphs
BFS
• BFS is a graph traversal algorithm that visits

nodes in breadth-first order using a queue data
structure.

• It is useful for finding the shortest path
between two nodes in an unweighted graph
because it explores all nodes at a given
distance from the starting node before moving
on to nodes that are farther away.

• BFS has a time complexity of O(V+E), where
V is the number of nodes and E is the number
of edges in the graph.

• It can be implemented iteratively or
recursively, but the iterative approach is
typically preferred due to avoiding stack
overflow errors on large graphs.

• BFS can also be used to detect cycles in a
graph. If a node is visited twice during the
BFS traversal, then there is a cycle in the
graph.

def BFS(G, node1, node2):
Q = deque([node1])
marked = {node1 : True}
for node in G.adj:
if node != node1:
marked[node] = False

while len(Q) != 0:
current_node = Q.popleft()
for node in G.adj[current_node]:
if node == node2:
return True

if not marked[node]:
Q.append(node)
marked[node] = True

return False

DFS
1. Mark starting node as visited,
2. Go to next unmarked node in the current

node’s adjacent vertices,
3. Repeat.
4. If all adjacent nodes are marked, pop back up

the stack and repeat with the next node.

• Useful for finding all vertices connected to one
vertex, or finding a path between two.

Cycle detection
• Use depth-first search to traverse the graph

and check for cycles by keeping track of visited
nodes and their parent nodes.

• If the neighbor has been visited before and it is
not the parent node of the current node, it
means there is a cycle in the graph, so the
function returns True.

def has_cycle(G):
visited = set()
for node in G.adj:
if node not in visited:
if has_cycle_helper(G, node, visited, None):
return True

return False
def has_cycle_helper(G, node, visited, parent):
visited.add(node)
for neighbor in G.adj[node]:
if neighbor not in visited:
if has_cycle_helper(G, neighbor, visited,
↪→ node):
return True

elif neighbor != parent:
return True

return False

Checking connectedness
• BFS / DFS on all nodes, check if every other

node is connected

def is_connected(G: Graph):
Return True if and only if there is a path

↪→ between any two nodes in G
for i in range(len(G.adj)):
for j in range(i, len(G.adj)):
if not DFS(G, i, j):
return False

return True

Trees
Binary Tree
A tree where nodes have at most two children. A
complete binary tree requires that every leaf level
be filled, all leaf elements lean left and if there is
an ”empty space” where there is no even node it
must be a right child (ie nodes added to left child
first).

class Node:
def __init__(self, data):
self.data = data
self.left = None
self.right = None

class BST:
def __init__(self):
self.root = None

def insert(self, data):
if self.root == None:
self.root = Node(data)

else:
self._insert(data, self.root)

def _insert(self, data, cur_node):
if data < cur_node.data:
if cur_node.left == None:
cur_node.left = Node(data)

else:
self._insert(data, cur_node.left)

elif data >= cur_node.data:

if cur_node.right == None:
cur_node.right = Node(data)

else:
self._insert(data, cur_node.right)

def height(self):
if self.root == None:
return 0

else:
return self._height(self.root, 0)

def _height(self, cur_node, cur_height):
if cur_node == None:
return cur_height

left_height = self._height(cur_node.left,
↪→ cur_height + 1)

right_height = self._height(cur_node.right,
↪→ cur_height + 1)

return max(left_height, right_height)

XC3 Trees
• if the root node of an XC3-Tree has i children,

we say that XC3-Tree has degree i.
• Each child of the root node of an XC3-Tree is

also an XC3-Tree.
• The ith child of the root node of an XC3-Tree

has degree (i-2), if i > 2, and has degree 0
otherwise

• Finding height is O(logn)
• num of nodes in tree is fibinacci sequence

offset by 2 (so i=1 is 2 i=2 is 3 etc.)

value is root node value
function is created so value of the node is the

↪→ level that it is at
Ex. root node = node value 0, level 1 = node

↪→ value 1...
def create_XC3_tree(degree, value=0):
if degree == 0:
return Node(value)

else:
root = Node(value)
for i in range(1, degree+1):
if (i <= 2):
direct children with no children for i

↪→ <= 2
single Node is appended to the root
child = Node(value+1)

else:
for direct children with children,
creates another XC3 tree with the

↪→ required degree
append the sub-tree to root
child_degree = i-2
child = create_XC3_tree(child_degree,

↪→ value+1)
root.add_child(child)

return root

More info in Lab 7 findings.

RBT
Self balancing binary tree. Properties
• root is black
• all NIL leaves r black
• all red nodes’ children r black
• all paths from any node to their descendant

leaves have the same num of black nodes
• new nodes start red
When you have a ”problem child” (breaks rules),
if the aunt is black then rotate, if it is red then
you colour change. Time complexity for
operations
• Insertion: O(logn)
• Deletion:

def rotate_right(self, tree):
y = self.left
self.left = y.right
if y.right != None:
y.right.parent = self

y.parent = self.parent
if self.parent == None:
tree.root = y

elif self.is_left_child():
self.parent.left = y

else:
self.parent.right = y

y.right = self
self.parent = y

def rotate_left(self, tree):
see above, swap left and right dumbass <-

↪→ @vraj

def fix(self, node):
if node.parent == None:
node.make_black()

while node != None and node.parent != None and
↪→ node.parent.is_red():

if node.parent.is_left_child():
uncle = node.get_uncle()
if uncle != None and uncle.is_red():
node.parent.make_black()
uncle.make_black()
node.parent.parent.make_red()
node = node.parent.parent

elif node.is_right_child():
node = node.parent
node.rotate_left(self)

else:
node.parent.make_black()
node.parent.parent.make_red()
node.parent.parent.rotate_right(self)

else:
uncle = node.get_uncle()
if uncle != None and uncle.is_red():

node.parent.make_black()
uncle.make_black()
node.parent.parent.make_red()
node = node.parent.parent

elif node.is_left_child():
node = node.parent
node.rotate_right(self)

else:
node.parent.make_black()
node.parent.parent.make_red()
node.parent.parent.rotate_left(self)

self.root.make_black()

Shortest Path (Graphs)
Dijkstra’s
• Does not work with negative weights because

once a vertex is marked, the algorithm never
develops this node again - it assumes the path
with this node is the shortest

• When to use and why:
– When there is no easily calculable heuristic
– When all weights are guaranteed to be

positive
– When you don’t know your destination

• Complexity:
O(V · (get next node) + E · (update path))

– For lists/dicts: O(V 2 + E)
– For fib. heap: O(V log V + E)
– For fib. heap, dense graph:

O(V log V + V 2) ≈ O(V 2)
– For min. heap: O(V log V + E log V)
– Multiply all terms by V for all-pairs ver.

def dijkstra(G,s,d):
marked, dist = {}, {}
Q = min_heap.MinHeap([])
for i in range(G.number_of_nodes()):
marked[i] = False
dist[i] = float("inf")
Q.insert(min_heap.Element(i, float("inf")))

Q.decrease_key(s, 0)
dist[s] = 0
while not (Q.is_empty() or marked[d]):
current_node = Q.extract_min().value
marked[current_node] = True
for neighbour in G.adj[current_node]:

edge_weight = G.w(current_node, neighbour)
if not marked[neighbour]:

if dist[current_node] + edge_weight < dist
↪→ [neighbour]:

dist[neighbour] = dist[current_node] +
↪→ edge_weight

Q.decrease_key(neighbour, dist[neighbour
↪→])

return dist[d]

Bellman-Ford
• Works with negative weights, but does not

work if there is a negative cycle
• When to use and why:

– When there are negative weights
• Time complexity:

– Regular: O(EV)
– Complete graph (edge between every pair of

vertices): O(n3)

– All-Pairs: O(EV 2) = O(V 4)

def bellman_ford(G, source):
pred = {} #Predecessor dictionary
dist = {} #Distance dictionary
nodes = list(G.adj.keys())
#Initialize distances
for node in nodes:
dist[node] = float("inf")

dist[source] = 0
#Meat of the algorithm
for _ in range(G.number_of_nodes()):
for node in nodes:

for neighbour in G.adj[node]:
if dist[neighbour] > dist[node] + G.w(node

↪→ , neighbour):
dist[neighbour] = dist[node] + G.w(node,

↪→ neighbour)
pred[neighbour] = node

return dist

Floyd-Warshall
• All-pairs shortest path
• Works on negative weight graphs
• Beats Bellman-Ford for dense graphs, but loses

for sparse graphs

def mystery(G):
n = G.number_of_nodes()
d = init_d(G)
for k in range(n):
for i in range(n):

for j in range(n):k

if d[i][j] > d[i][k] + d[k][j]:
d[i][j] = d[i][k] + d[k][j]

return d
def init_d(G):

n = G.number_of_nodes()
d = [[float("inf") for j in range(n)] for i in

↪→ range(n)]
for i in range(n):
for j in range(n):

if G.are_connected(i, j):
d[i][j] = G.w(i, j)

d[i][i] = 0
return d

A*

def a_star(G, s, d, h):
pred = {} # Predecessor dictionary
dist = {} # Distance dictionary
marked = {} # Marked dictionary
Q = min_heap.MinHeap([])
nodes = list(G.adj.keys())
Init to inf
for node in nodes:
Q.insert(min_heap.Element(node, float("inf")))
dist[node] = float("inf")
marked[node] = False

Set start distance to 0
Q.decrease_key(s, 0)
dist[s] = 0
Meat of the algorithm
while not (Q.is_empty() or marked[d]):
extact the next minimum element and mark it
current_element = Q.extract_min()
current_node = current_element.value
marked[current_node] = True
update keys by distance + heuristic
for neighbour in G.adj[current_node]:

dont add the heuristic to the shortest
↪→ path
do add it in the score of the min_heap
if not marked[neighbour]:

if dist[current_node] + G.w(current_node,
↪→ neighbour) < dist[neighbour]:

add heuristic to weight in queue
Q.decrease_key(neighbour, dist[

↪→ current_node] + G.w(current_node,
↪→ neighbour) + h.get(neighbour))

dist[neighbour] = dist[current_node] + G
↪→ .w(current_node, neighbour)

update the predecessor dictionary
pred[neighbour] = current_node

return (pred, dist[d])

Dynamic Programming

Why Use Dynamic Programming?
Dynamic programming splits a recursive problem
into sub problems, and stores the results of these
sub problems. This helps reduce the overall
complexity of the function since the function does
not need to waste time calculating something
that has already been calculated.
Top Down Pros: 1. Solves fewer sub problems.
2. Only solves the problems it needs to. Cons: 1.
Recursive in nature. 2. When solving problems,
you’re still solving the previous case until you get
to a stored case or the base case
Bottom Up Pros: 1. Iterative in nature. 2.
Quick lookup after problems have been solved.
Cons: 1. Solves unnecessary subproblems. 2. You
need to solve all the subproblems.

Subset Sum
s(i,t) means you are given a list of numbers i and
want to see if u can sum them to a value t
Recursive method:
• S(i, t) = S(i − 1, t) or S(i − 1, t − n[i − 1])
• Case 1: You use n[i − 1] (where n is the list of

numbers)
• Case 2: You don’t use n[i − 1]

Bottom-up method:

• sp(i, j) = sp(i − 1, j) or
sp(i − 1, j − nums[i − 1])

• Space complexity: θ(nt) → θ(t) If all you care
about is T or F, you can delete the row you are
finished with every time you move to the next
row, space complexity goes down to O(t),
where t is the length of the row

• Time complexity: θ(nt)
• Iterative; solves all problems
• Bottom-up = you start from the base case

(bottom) and build upwards to your solution

Top-down method:

• Same as recursive method, solves all problems
you need to solve, recursion generally loses to
iterative

• But for lists with a high max value, top-down
beats bottom-up in time

• Top-down = you start with your solution and
break it down into sub problems

def subset_sum_dynamic(numbers, target):
sp = [[False for j in range(target + 1)] for i

↪→ in range(len(numbers) + 1)]
d = {}
for i in range(len(numbers) + 1):
sp[i][0] = True

for i in range(1, len(numbers) + 1):
for j in range(1, target + 1):
if numbers[i - 1] > j:
sp[i][j] = sp[i - 1][j]
if sp[i - 1][j]:
d[i, j] = ((i - 1, j), False)

else:
sp[i][j] = sp[i - 1][j] or sp[i - 1][j -

↪→ numbers[i - 1]]
if sp[i - 1][j]:h
d[i, j] = ((i - 1, j), False)

elif sp[i - 1][j - numbers[i - 1]]:
d[i, j] = ((i - 1, j - numbers[i - 1]),

↪→ True)
if sp[len(numbers)][target]:
print(recover_solution(d, numbers, target))

return sp[len(numbers)][target]
def subset_sum_top_down(numbers, target):
sp = {}
for i in range(len(numbers) + 1):
sp[(i,0)] = True

for i in range(target + 1):
sp[(0,i)] = i == 0

top_down_aux(numbers, len(numbers), target, sp)
print(len(sp))
return sp[(len(numbers),target)]

def top_down_aux(numbers, i, j, sp):
if numbers[i - 1] > j:
if not (i - 1, j) in sp:
top_down_aux(numbers, i - 1, j, sp)

sp[(i, j)] = sp[(i - 1, j)]
else:
if not (i - 1, j) in sp:
top_down_aux(numbers, i - 1, j, sp)

if not (i - 1, j - numbers[i - 1]) in sp:
top_down_aux(numbers, i - 1, j - numbers[i -
↪→ 1], sp)

sp[(i, j)] = sp[(i - 1, j)] or sp[(i - 1, j -
↪→ numbers[i - 1])]

Splitting Strings
This problem uses a function to split a string into
substrings of valid english words. Using the Trie
data structure, an add word() function is used to
recursively build up words from a text file. It
uses the can split() function to split the strings
to create substrings and to check if they are valid
strings. Note that the DP approach for this
problem results in an almost linear time
complexity.
• Time complexity: O(m) where m is the length

of the longest word
• Space complexity: O(mn) where n is the

length of the string

def can_split_dynamic(s):
sp = [True]
d = {}
for i in range(len(s)):
b = False
for j in range(i, max(i - 22, -1), -1):
b = (sp[j] and t.check_word(s[j:i+1]))
if b:
d[i] = j
break

sp.append(b)
return (sp,d)

Tries

class Trie:
def __init__(self):
self.is_word = False
self.children = [None for _ in range(26)]

def add_word(self, word):
if word == "":
self.is_word = True

else:
if self.children[letter_index(word[0])] ==
↪→ None:
self.children[letter_index(word[0])] =

↪→ Trie()
self.children[letter_index(word[0])].
↪→ add_word(word[1:])

def check_word(self, word):
if word == "":
return self.is_word

else:
if self.children[letter_index(word[0])] ==
↪→ None:
return False

return self.children[letter_index(word[0])].
↪→ check_word(word[1:])

def get_height(self):
heights = []
for child in self.children:
if child != None:
heights.append(child.get_height())

if heights == []:
return 1

return 1 + max(heights)
def get_num_words(self):
num_words = []

for child in self.children:
if child != None:
num_words.append(child.get_num_words())

if self.is_word:
return 1 + sum(num_words)

return sum(num_words)
def create_random_word(self):
index_list = []
for i in range(26):
if self.children[i] != None:
index_list.append(i)

if self.is_word:
index_list.append(-1)

j = random.randint(0, len(index_list) - 1)
j = index_list[j]
if j == -1:
return ""

return char_from_index(j) + self.children[j].
↪→ create_random_word()

def letter_index(letter):
return ord(letter) - 97

def char_from_index(i):
return chr(i+97)

Egg Drop Problem
This problem is about determining which floor
you can drop an egg from to see if the egg breaks.
Below are the cases for the recursion:
• Case 1: The egg breaks. Lets say you have k

eggs and you drop one and the egg breaks,
then you have k-1 eggs and you have between 1
- n’ floors to check, so sp(k, n) = sp(k-1, n-1)

• Case 2: The egg doesn’t break. In this case,
you search between n’ to n, so we get sp(k,n)
= sp(k, n-n’)

• The overall recursion is max(sp(k-1, n’-1),
sp(k, n-n’)) + 1

The complexity of this problem is

• Time Complexity: O(F2E) ?
• Space Complexity:

def min_drops(floors, eggs):
opt_floors = {}
L = sp = [[float("inf") for j in range(eggs+1)]

↪→ for i in range(floors)]
for i in range(floors):
sp[i][1] = i+1

for j in range(1, eggs+1):
sp[0][j] = 1

for i in range(1, floors):
for j in range(2, eggs+1):
current_min = float("inf")
current_index = -1
for n in range(1, i+1):
if current_min >= max(sp[i-n][j], sp[n-1][

↪→ j-1]) + 1:
current_min = max(sp[i-n][j], sp[n-1][j

↪→ -1]) + 1
current_index = n

sp[i][j] = current_min
opt_floors[i,j] = current_index

return sp[floors-1][eggs], opt_floors

dynamic problem ex: LCS
Given two strings str1 and str2, return the length
of their longest common subsequence.

def lcs_recursive(str1, str2, m, n):
if m == 0 or n == 0:
return 0

if str1[m-1] == str2[n-1]:
return 1 + lcs_recursive(str1, str2, m-1, n-1)

↪→ ;
else:
return max(lcs_recursive(str1, str2, m, n-1),

↪→ lcs_recursive(str1, str2, m-1, n));
#memoizaiton cache
L = [[None]*(n+1) for i in range(m+1)]
def lcs_topdown(str1, str2, m, n):
if m == 0 or n == 0:
Base case: LCS is 0 if either string has

↪→ length 0.
return 0

if L[m][n] != -1:
If the length of the LCS for this pair of

↪→ prefixes has already been computed
return L[m][n]

if str1[m-1] == str2[n-1]:
If the last characters of the strings match,

↪→ include them in LCS.
Recursively call the function with the last

↪→ character removed from each string.
L[m][n] = 1 + lcs_topdown(str1, str2, m-1, n-1)
return L[m][n]

else:
If the last characters of the strings don’t

↪→ match, take max LCS by excluding last
↪→ character of X or Y.

L[m][n] = max(lcs_topdown(str1, str2, m, n-1),
↪→ lcs_topdown(str1, str2, m-1, n))

return L[m][n]
def lcs_bottomup(str1 , str2):
m = len(str1)
n = len(str2)
L = [[None]*(n+1) for i in range(m+1)]
for i in range(m+1):
for j in range(n+1):

if i == 0 or j == 0 :
L[i][j] = 0

elif str1[i-1] == str2[j-1]:
L[i][j] = L[i-1][j-1]+1

else:
L[i][j] = max(L[i-1][j] , L[i][j-1])

return L[m][n]

Lab Takeaways
Lab 2
Covers the bad sorts (bubble, selection, insertion)
• Despite all the bad algorithms having the same

worst-case performance, in the real world they
performed significantly differently, with bubble
sort being very bad and selection sort being
the best (even though insertion sort should be
theoretically faster)

• “Optimizing” an algorithm might make the
runtime worse, if the optimization being
performed ends up having more overhead than
the non-optimized version

• Selection sort does not change with more or
less disorder in the array, while insertion sort
and bubble sort both perform better with a
more ordered array.

Lab 3
Covers heap < merge < quick sort.
• In general, quicksort is fastest, with mergesort

and heapsort trailing behind for one-off
sorting.

• When arrays are near-sorted, the performance
of quicksort falls off of a cliff

• Modifications to quicksort (dual quicksort)
improve performance, up to a limit

• Bottom-up mergesort tends to be a good bit
faster than top-down mergesort, as the
recursive splitting step is removed

• Insertion sort is faster than mergesort and
quicksort for very small lists (less than 10-15
elements in the list)

Lab 4
• As the proportion of edges increases, the

probability of a cycle occurring in the graph
also increased.

• The probability of all edges in a graph being
connected follows a sigmoid curve

Lab 5
• The set of nodes in a minimum vertex cover

and the set of nodes in a maximum
independent set can be summed to equal the
set of all nodes in a graph.

Lab 6
• Red-black trees have approximately half the

height of a naive binary search tree, when
working with random data.

• Binary search trees perform significantly worse
with ordered data, versus random data, due to
the lack of balancing. Red-black trees have
relatively constant performance no matter the
degree of disorder.

• If insertion speed is significantly more
important than maintaining a perfectly
balanced search tree, naive BSTs may be
viable, but in most cases RBTs are preferred.

Lab 7
• Height of XC3-Tree can be determined from its

degree i using the equation h(i) = ⌈i/2⌉, or by
leaf node n where h = logϕ(n)

• Number of nodes in an XC3-Tree with degree i
can be found using Fibonacci sequence where
nodes(i) = nodes(i − 1) + nodes(i − 2)

• “Proof”: Suppose x ∈ {nodes(i)}, i ∈ N and

ϕ = 1+
√

5
2

, the golden ratio. Then,

h(x) = logϕ(x)

= logϕ

Fibonacci Sequence︷ ︸︸ ︷
(nodes(x − 1) + nodes(x − 2))

By the definition of logarithms, the above
equality holds because we are dividing the
Fibonacci sequence by ϕ, until it is equal to 1.
Since the number of nodes in a XC3-Tree is the
Fibonacci sequence–as derived at the beginning
of this experiment–the division of each node by
ϕ, by the definition of the golden ratio,
represents the number of Fibonacci numbers
we go through to get to the root node.
So, logϕ(x) gives us the number of times we

divided by ϕ to get to 1.
Since the number of times we divide by ϕ
represents the number of Fibonacci numbers
we go through to get first base case (which is
the root node in the XC3 tree), The height of
the tree must be logϕ(n) for some leaf node n.

Now, since we have shown that the height of
the XC3-tree is logϕ(n), we can write that the

time complexity of an XC3-tree is O(logϕ(n))

because of the change of base properties of the
logarithm.

Final Lab
• Bellman-Ford’s approximation algorithm

performs significantly better than normal
Bellman-Ford, while generally not being
affected by the reduced number of relaxations

• Dijkstra’s approximation algorithm performs
poorly when the number of relaxations is small
compared to the size and density of the graph

• Empirically testing A* on random data is hard,
but using real-world data makes it easier

• Straight-line approximation is a good heuristic
for A* on real-world data

• Use A* when we know the ending node, and
have a good heuristic to work with.

	
	General Notes
	Optimizations

	List and Dict operations
	List operations
	Dictionary operations

	Good Sorts
	Mergesort
	Top-down vs Bottom-up TL;DR
	Top-down
	Bottom-up

	Quicksort
	Heapsort

	Graphs
	BFS
	DFS
	Cycle detection
	Checking connectedness

	Trees
	Binary Tree
	XC3 Trees
	RBT

	Shortest Path (Graphs)
	Dijkstra's
	Bellman-Ford
	Floyd-Warshall
	A*

	Dynamic Programming
	Why Use Dynamic Programming?
	Subset Sum
	Splitting Strings
	Tries
	Egg Drop Problem
	dynamic problem ex: LCS

	Lab Takeaways
	Lab 2
	Lab 3
	Lab 4
	Lab 5
	Lab 6
	Lab 7
	Final Lab

