

NP Problems

SHOW A PROBLEM IS NP

NP (verifier definition): Problems that are verifiable in polynomial time ($O(n^k)$).

Therefore, to show a problem is in NP, create a verifier for the problem that runs in polynomial, and show that it correctly verifies the result.

NP (nondeterministic algorithm definition): Problems that are solvable in polynomial time by nondeterministic algorithms.

The two definitions are interchangeable.

Show a problem is as hard as another NP-Complete problem

Definition: Problem is NPC if problem is in class NP, and as "hard" as any problem in NP.

Formally, if X is NP-complete, $X \in \text{NP} \wedge X \leq_p Y$, then Y is NP-complete.

Polynomial-time Reductions

If we have a procedure that transforms any instance of X into an instance of Y , such that the process takes polynomial time, and the answers to the problem are the same, then we have reduced X to Y . $X \leq_p Y$ means X is reduced to Y .

Use polynomial time reductions in the opposite way: If $X \leq_p Y$, and X is not polynomial-time, then Y is not polynomial-time.

Independent Set / Vertex Cover / Set Cover

- Independent Set:** Given a graph $G = (V, E)$ and an integer k , is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S ?

- Vertex Set:** Given a graph $G = (V, E)$ and an integer k , is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S ?

- Set Cover:** Given a set U of elements, a collection S_1, S_2, \dots, S_m of subsets of U , and an integer k , does there exist a collection of $\leq k$ of those sets whose union is equal to U ?

NPC Algo.s & Reductions from Class:

Packing/Covering: 3-SAT \leq_p Independent Set \leq_p Vertex Cover \leq_p Set Cover

Sequencing: 3-SAT \leq_p Directed Hamiltonian Cycle \leq_p Hamiltonian Cycle \leq_p Longest Path \leq_p Travelling Salesperson

Partitioning: 3-SAT \leq_p Colorability Problem \leq_p Register Allocation Problem

Numerical: 3-SAT \leq_p Subset Sum Problem \leq_p Partition Problem \leq_p Interval Scheduling with Release Time Problem

3-SAT \leq_p Independent Set: G contains 3 nodes for each clause, one for each literal. Connect 3 literals in a clause in a triangle, Connect literal to each of its negations.

G contains Independent Set of size $k = |\Phi|$ iff Φ is satisfiable.

Proof \Rightarrow : Let S be independent set of size k . S must contain exactly one node in each triangle. Set these literals to true (and remaining variables consistently). Truth assignment is consistent and all clauses are satisfied.

Proof \Leftarrow : Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k .

Complexity of Reduction: Constructing k triangles is $O(k)$. Connecting literals to their negations is also $O(k)$. Hence reduction is polynomial time.

Independent Set Problem \leq_p Vertex Cover

Problem: We run Vertex-Cover($G, n - k$), and we get $V - S$ a vertex cover of size $n - k$. S is of size k . Consider two nodes $u \in S$ and $v \in S$. Observe that $(u, v) \notin E$ since $V - S$ is a vertex cover. Thus, no two nodes in S are joined by an edge, which implies S is an independent set.

Vertex Cover Problem \leq_p Independent Set

Problem: Let S be an independent set of size k . $V - S$ is of size $n - k$. Consider an arbitrary edge (u, v) . S being independent implies either, $u \notin S$ or $v \notin S$ (or both), $u \in V - S$ or $v \in V - S$ (or both). Thus, $V - S$ covers (u, v) .

Vertex Cover Problem \leq_p Set Cover

Problem: Universe $U = E$. Include one set of each node $v \in V$: $S_v = \{e \in E : e \text{ incident to } v\}$. $G = (V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover problem of size k .

Directed Hamiltonian Cycle \leq_p Hamiltonian Cycle

Given a Digraph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes. Where for each node $i = 0 \dots n$ we create i_{in} which connects to i all nodes pointing to i , i which connected to i_{in} and i_{out} , i_{out} which connects to i and all nodes pointing out of i .

Hamilton Cycle Problem \leq_p Travelling Salesman Problem

Given an instance $G = (V, E)$ of Hamiltonian Cycle Problem, create n cities with distance function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

Hamiltonian path, we can travel to all the cities within length (of exactly) n ! Otherwise, we cannot do so without travelling a adding a $+2$ to our trip, ensuring our tour length would be over n . TSP instance has tour of length $\leq n$ iff G has Hamiltonian Cycle.

Colorability Problem \leq_p Register Allocation

Problem: Given a Register Allocation Problem we can create an interference graph where nodes are program variables, edge between u and v if there exists an operation where both u and v are "live" at the same time. Observe that we can solve the Register Allocation Problem problem iff the interference graph is k -Colorable for any constant $k \geq 3$.

Vertex-Cover \leq_p Hitting-Set

Construct: Given $G = (V, E)$ in the following way. Let B_1, B_2, \dots, B_m be sets of size 2 such that

$\{u, v\} = B_i$ iff $(u, v) \in E$ for $i = 1, \dots, m$ where $m = |E|$. Let $V = A$. Then, the hitting set $H \subseteq A = V$ will be a subset of vertices $|H| \leq k$ where for each edge $(u, v) = \{u, v\} = B_i$ for some i , at least one of its endpoints is in H because $H \cap B_i = H \cap \{u, v\} \neq \emptyset$. As such H is a valid solution to the vertex cover problem.

3-SAT

SAT: Given a CNF formula ϕ , does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

3-SAT \leq_p Set Cover:

Subset-Sum

- Given natural numbers and integer W , is there a subset that adds up to W
- Theorem 3-SAT \leq_p Subset-Sum**
- Thus, it is also NP-Complete

Hamilton Cycle

- Given undirected graph, is there a cycle that passes through all vertices

Hamilton Path

- Given graph, is there a path from s to t that passes through all vertices

Directed Hamilton Cycle

- Given digraph, is there a directed cycle that passes through all vertices
- Theorem Dir-Ham-Cyc \leq_p Ham-Cyc**

Since we can create an instance of Dir-Ham-Cyc from an instance of 3-SAT s.t. there is a hamiltonian cycle iff ϕ is satisfiable, we know Dir-Ham-Cyc is NP-complete.

Thus, 3-SAT \leq_p Dir-Ham-Cyc \leq_p Ham-Cyc \leq_p Ham-Path

So all above are NP-complete

Finding Small Vertex Covers

- $O(2^k kn)$ time algorithm.

```
Vertex-Cover(G, k)
  if (G contains no edge) return true
  if (G contains >= kn edges) return false
  let (u, v) be any edge of G
  a = Vertex-Cover(G - {u}, k-1)
  b = Vertex-Cover(G - {v}, k-1)
  return a or b
```

- Each invocation takes $O(kn)$ time. A vertex cover of size k has at most $k(n - 1)$ edges since each vertex covers at most $n - 1$ edges.

Independent-Set-In-A-Forest (F)

```
S <= emptyset
while (F has at least one edge){
  Let e = (u, v) be an edge in v such that v
  is a laf
  Add v to S
  Delete from F nodes u and v, and all edges
  incident to them
}
return S
```

Vertex Cover in Bipartite Graph

The max cardinality of a matching is equal to the min cardinality of a vertex cover.

Travelling Salesman

- Given a set of n cities and distance $d(u, v)$ between cities, is there a tour of length $\leq D$

Theorem Ham-Cyc \leq_p TSP

- Construct an instance of TSP from an instance of Ham-Cyc s.t. the distance is 1 if $(u, v) \in E$ or 2 if $(u, v) \notin E$
- Thus, is NP-Complete

3-Colorability

- Given undirected graph, can the vertices be coloured red, blue, green and no two adjacent vertices have the same colour
- Theorem 3-SAT \leq_p 3-Color**

- Construct a graph instance of 3-color from the instance of 3-SAT s.t. all literals are vertices. Add 3 vertices, Base, True, False & connect to each other.

- Connect negation of each literal with each other and connect each literal to the base.
- The graph is 3-colorable iff it is 3 satisfiable, thus it is also NP-Complete

Randomization

Rabin-Miller Algorithm

Probabilistic primality test

MILLER-RABIN(n, k)

```
1 if n = 2 return TRUE
2 if Is-Even(n)
  return FALSE
3 a = RANDOM-POSITIVE-INT()
4 if a^(n-1) ≢ 1 mod n
  return FALSE
5 else
  Find s, h such that s is odd
  and n - 1 = s2^h
6 Compute sequence a^{s·2^0},
  a^{s·2^1}, a^{s·2^2}, ...
7 if a^{s·2^h} mod n
  if all elements in sequence are 1
  return TRUE
8 else
  if the last element different from 1
  is -1
  return TRUE
9 else
  return FALSE
```

Randomized Divide and Conquer:

Finding the Median

SELECT(S, K)

```
1 Choose a splitter a_i ∈ S
2 for each element a_j ∈ S
  3 Put a_j in S- if a_j < a_i
  4 Put a_j in S+ if a_j > a_i
```

```
5 if |S-| = k - 1
  return a_i
```

```
6 elseif |S-| ≥ k
  return SELECT(S-, k)
```

```
7 // kth largest element is in S-
  return SELECT(S-, k - 1)
```

```
8 else |S-| = ℓ < k - 1
  return SELECT(S+, k - ℓ - ℓ)
```

```
9 // kth largest element is in S+
  return SELECT(S+, k - 1 - ℓ)
```

```
10
11
12
13
14
15
16
17
18
19
20
```

Other

ROD CUTTING PROBLEM

Given a rod of length n , with varying prices per length of rod, maximize the total amount of money gained.

We can construct the recurrence relation $r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i})$ We compute for smallest to largest rod lengths, final result stored in $r[n]$.

SEARCHING IN SORTED ARRAYS

Binary Search: $O(\log n)$ time complexity, $O(n)$ space complexity if using recursion, $O(1)$ otherwise.

QUICKSORT

Average case complexity $O(n \log(n))$ because of random pivot. Worst case $O(n^2)$.

QUICKSORT(S)

```
1 if |S| ≤ 3
2 else return INSERTION-SORT(S)
3 else
  pivot = RANDOM-ELEMENT(S)
  for x ∈ S
    if x < pivot
      APPEND(S-, x)
    if x > pivot
      APPEND(S+, x)
  S- = QUICKSORT(S-)
  S+ = QUICKSORT(S+)
  return CONCAT(S-, [x], S+)
```

PARTITION(A, p, r)

```
1 x = A[r]
2 i = p - 1
3 for j = p to r - 1
  if A[j] ≤ x
    i + 1
    SWAP(A[i], A[j])
  SWAP(A[i + 1], A[r])
7 return i + 1
```

Summation Rules

$\sum_{i=m}^n a_i = \sum_{i=m+k}^{n+k} a_{i-k}$

$\sum_{i=m}^n a_i = \sum_{i=m-k}^{n-k} a_{i+k}$

Quadratic: $\sum_{i=1}^n i = \frac{n(n+1)}{2}$

$\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$

Geometric: For $|r| < 1$, $\sum_{i=1}^n ar^{i-1} = \frac{a(1-r^n)}{1-r}$.

$|r| > 1$, $\sum_{i=1}^n ar^{i-1} = \frac{a(r^n-1)}{r-1}$

Stats

- $A \subseteq S$, $P(A) = \sum_{x \in A} P(x)$

- $P(\emptyset) = 0$, $P(S) = 1$

- $A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$

- Mutually exclusive $P(A \cap B) = \emptyset$

- Independent $P(A \cap B) = P(A)P(B)$

- Conditional $P(A|B) = \frac{P(A \cap B)}{P(B)}$

- Random Variable X is usually the frequency of occurrence of something

- Expected Value $E(X) = \sum x_i P(x_i)$

- Linearity of Expected Value $E(\sum X_i) = \sum E(X_i)$, $E(X + Y) = E(X) + E(Y)$, $E(cX) = cE(X)$

Takes $O(\text{poly}(n)3^n)$ time.

EXACT HAMILTONIAN CYCLE ALGORITHM

Dynamic Programming Solution: Let $c(s, v, X)$ be cost of cheapest path between s and v that visits every node in X exactly once.

$OPT = \min_{v \neq s} c(s, v, V) + c(v, s)$ Therefore

$c(s, v, X) =$

$$\begin{cases} c(s, v) & \text{if } |X| = 2 \\ \min_{u \in X \setminus \{s, v\}} c(s, u, X \setminus \{v\}) & \text{if } |X| > 2 \\ c(s, v) + c(u, v) & \text{if } |X| > 2 \end{cases}$$