Stable Matching Problem

e n set of men and women, find a matching that
is best for all.

e Perfect Matching: All men m and women w
each appear in at most one pair of the
matching

e Unstable Pair: Perfect matching where m
prefers w and w prefers m to their current
partners.

STRONG/WEAK INSTABILITY

Strong Instability - w & m both prefer each
other over current partner

Weak Instability - w prefers m over current
partner and m prefers w or is indifferent b/w the
two, or m prefers w over current partner and w
prefers m or is indifferent b/w the two

GALE-SHAPELY ALGORITHM

initially all m and w are free
while an unmatched man m hasn’t proposed to every
— woman:
w <- highest ranked woman in m’s list that m
<5 hasn’t proposed to
if w is free:
(m,w) is engaged
else:
if w prefers m’ to m then:
m is still free
else w prefers m to m’
(m,w) is engaged
m’ is set to free

then:

Only n? proposals possible, thus O(n?2)

Algorithm Analysis

e Big-O: there exists constants ¢ > 0 and
ng > 0s.t. T(n) < c- f(n) for all n > ng

o Big-Omega: there exists constants ¢ > 0 and
ng = 0s.t. T(n) > c- f(n) for all n > ng

e Big-Theta: there exists constants cq,cg > 0
and ng > 0 s.t. ¢1 - f(n) < T(n) < cg - f(n)
for all n > ng

Using limit theorem
) — e > 0, f(n) s ©(g(n))

g(n)
=c =0, f(n)is O(g(n))

e lim

f(n)

e lim a(n)

Can prove using limit that there is no constant c
that acts as upper bound to show that

f(n) # O(g(n))

MASTER THEOREM

T(n) = aT(n/b) + f(n)

e a > 1: is the number of subproblems

® b > 0: is the factor by which the subproblem
size decreases

e f(n): work to divide/merge subproblems

Given the recurrence relation
T(n) = aT(n/b) + f(n), k = logya

e Case 1: If f(n) = O(nF~€) for ¢ > 0, then
T(n) = ©(nF)
e Case 2: If f(n) = ©(nF), then T(n) = ©(nF
log n)
e Case 3: If f(n) = Q(nFT€) for ¢ > 0 and
F(n/b) < c- f(n) for ¢ < 1, then

T(n) = ©(f(n)).
Note that a - f(n/b) < c -
f(n) = o(nkte

Analysis of Master Theorem

f(n) holds if

Compare f(n) with n!°9b%

e Case 1: nlo9b®
o(nlogba)

e Case 3: f(n) is larger, hence T(n) = ©(f(n))

e Case 2: f(n) and n'®9b% are of the same size,
so T(n) = @(nl"gb’llogn)

is larger, hence T(n) =

Master Theorem Fails

Use iteration technique — Given

T(n) = T(x) + f(n), substitute n with = until a
pattern is found, then generalize it to find the
solution.

Special Cases: T(n) = aT(n — b) + nk

e If a < 1, then T(n) = O(nF).
e If a = 1, then T(n) = O(nkt1).
e If a > 1, then T(n) = O(nF . a™/?).

Greedy Algorithms

Make the best choice at that time, locally
optimal choice each time will lead to globally
optimal solution.

e Cashier Algorithm: Pick the largest coin
denomination possible to use the fewest
number of coins. Optimal for 1,5,10,25,100,
but can be suboptimal.

e Interval Scheduling: Given jobs, find max
subset of non-overlapping jobs. Use Earliest
Finish Time template (sorting required ->
O(nlogn))

e Interval Partitioning: Given lectures, find
min number of rooms s.t. no 2 lectures are at
the same time in the same rooms. Use Earliest
Start Time template, allocate the room if no
conflict, otherwise add a new classroom
(sorting -> O(nlogn))

HUFFMAN ENCODING /
HUFFMAN TREE

Create trees by combining lowest frequencies first

(usually left 0 & right 1), then create a table
with the codes. Use the codes and frequencies to
determine the avrg code length. (3; len(c;)p;)

CACHING

FIFO: Add cache items in order of first in and
first out

LIFO: Remove the last item in the cache when
new items are adde:

LRU: Remove the cache item that was least
recently used / added offline

LFD / FIF: Remove the cache item that will be
used furthest in the future the optimal offline
page replacement algorithm, OPT = LFD

FWF: Remove ALL cache items when the cache
is full and a new item is being added.
Randomized Marking: whenever you add or
request an item, it will be marked. When we
want to add a new item, we randomly remove an
unmarked item. If all items are marked and we
are adding a new item, we unmark all of the
cache items and randomly remove one.

PROOFS OF OPTIMALITY

Greedy Stays Ahead: After each step, greedy

solution is at least as good as another
algorithm (an optimal algorithm).

e Structural: Find a structural bound that a
solution must get, then show that greedy gets
this bound.

e Exchange Argument: Transform another
solution one step at a time to the greedy
solution without hurting its quality.

e Contradiction: Assume greedy is NOT
optimal, then find a contradiction using the
optimal solution/algorithm.

Dynamic Programming

UNDERSTANDING RECUR &
HOW TO PRODUCE THEM
Similar to divide and conquer, break any given
OPT(j) into an equation made up of smaller
subproblems, using strictly smaller values for
OPT(). Use multiple cases to represent base
cases.

Weighted Interval Scheduling

Find max weight of jobs that are not overlapping.

Cannot use earliest finish time since weights
matter, so we need to take into account the
weights.

Define p(j) = largest index i < j such that job i
compatible with j.

Binary Choice: Job n is in the optimal solution
or NOT in optimal solution

Define OPT(j) = sum of the weights of all jobs
that are optimal up to job j

Recurrence Relation & Algorithm
) v; + OPT(p(j)) j € OPT
PT(j) = 4%
OPT(j) {OPT(j - 1) j ¢ OPT
Weighted-Interval-Scheduling(jobs) -- BU

Sort jobs by earliest finish time

Compute p(1), ..., p(n)

M[0] = 0O

for 3 =1 ton

M[3j] = max(v[j]

return M[n]
Find-Solution (j)

if § = 0: return {}

else if (v[3] + MIp(3)]1 > MI3-11)
return {j} U Find-Solution(p[j])

+ Mlp(3)], M[3-1])

else:
return Find-Solution(j-1)

Finding optimal cost takes O(nlogn) due to
initial sorting. To find the set of jobs, we do a
second pass, taking O(n).

CS 3ACS3 - The End of Janicki Edition
KNAPSACK PROBLEM

Given n objects with weights and values. We

want to fill a knapsack of max weight W s.t. it
has the max value. Define OPT (i, w) = max
profit for items 1, .., 4 with weight limit w.
OPT(i,w) =
[0)
OPT(i — 1, w) w
maz(OPT(i — 1, w),
v; + OPT(i — 1, w — w;) o.w.
Knapsack (items, W)
for w = 0 to W: M[0,w] = 0
for i = 1 to n:
for w =1 to W:
if (w[i] > w):
M[i,w] = M[i-1,w]
else:
M[i,w] vii] + M[i

= max(m[i-1,w],
> -1, w-w[i]
return M[n, W]

COIN CHANGE PROBLEM
Given an array of coin values,

V ={C1,Ca,...,Cm} Cases are coin is not
taken solution[i — 1][j], or is taken
solution[i][j — v[i]].

solution[i][j] = solution[i — 1][j]

+ solution[i][j — v[i]]

SEGMENTED LEAST SQUARES

Example of a multiway choice DP
Find a set of f(x) that fits the points the best
with not too many lines.
Define OPT(j) = min cost for py, ..., p;

Define e(i, j) = min sum of squares for p;,

OPT(j) =

0
{mi"1§i§j(5(i,j) +e+ M —1])

Segmented-Least-Squares (jobs)
for j = i ton
for i =1 to j
Compute e (i,)
M([0]
for
M[3]

1ton
= min (e (i, J)
3>=1

+ c + M[i-1]) for all i,
return M[n]

Find-Segments (3)
if j = 0: return (}
else:

Find i,7 for min(e(i,j) + c + M[i-1])

return the segment and the result of Find-

< Segments (i-1)

RNA SECONDARY STRUCTURE
Given RNA molecule B = by...by, find max base
pairs of secondary structures.
Secondary Structure Criteria:
e Watson-Crick: A-U, U-A, C-G, G-C
e No sharp turn: Separated by at least 4 bases
(bj,bj) €S =i <j—4
e Non-crossing: (b;, bj), (bg» b]'l) € S means
i < k < j <l not allowed.
Define OPT (i, j) =max number of base pairs in
substring b

OPT(i,j) =
0 i>45—4
OPT(i,j — 1) b &S
1+ maxy (OPT (i, t — 1)
+OPT(t+ 1,5 ~ 1)) (be.bj) € S
RNA (molecule B)
for k = 5 to n-1
for i = 1 to n-k
J=1+k
M[i, 3] = max(M[i,3-1], l+max_t (M[i,t
“— -1] + M[t+1,3-1]))

return M[1,n]

Note that we take max t (aka. max value
computed from using all possible t where

i <t < j — 4) such that there are no sharp turns
and (b, bj) are Watson-Crick complements

RNA Secondary Structure is an example of
dynamic programming over an interval, time

complexity O(n3) and space complexity O(n?2)

TOP-DOWN VS BOTTOM-UP

top down: calculate all the needed values.

bottom-
table val

up:
lues.

Divide and Conquer

CLOS

EST PAIRS PROBLEM

Given n points, find a pair of points with

smallest

euclidian distance.

0(n?) calculations.

Divide & Conquer:

merging

Closest—

pre-sorted list to O(nlogn)

Pair (List of Pairs)

O(nlog?n), reduced with

create a table, might not need all the

Brute force takes

Find line L such that it separates the points

d1
dz2
d =

— into exactly 2 halves.
Closest-Pair (points left of L)
Closest-Pair (points right of L)

min (d1,d2)

Delete all points further than d from L
Sort/Merge remaining points by y-coord
Compare if any of these remaining points is

retu

<> less than d
rn d

KARATSUBA TRICK

m = [n/2] — Divide into 2 subproblems
B = number base, usually base 10 or base 2.
a, b — first half & second half of number =

c,d
Ty =

B2 (ac) + B™ ((ac + bd) — ((a — b)(c — d))) + bd

first half & second half of number y

Only needs 3 recursive calls, some additions and
shifts. T'(n) = 3T (n/2) + 0(n) — 8(nl0923)

MERGE SORT

Divide list into 2 until there is only 1 item left,

so sorted. Merge the two sorted lists.

O(logn)

Mergesor
if |
11 =
12 =
mergs

t(list)

list| return list
Mergesort (1ist[0:half])
Mergesort (list [half:end])
edlist = []

Runs in

Compare values of each item in 11 and 12 and

retu

—
—
MG
s
> mergedlist.
rn mergedlist

iteration
decreasing) .

Network Flow
FORD-FULKERSON

High-level overview

1. Given a residual graph,

add one item to merged list per
(depends if increasing or
If one is empty,
just add the non-empty list to

amount of flow possible through one path
Update residual graph with successfully
pushed flows subtracted from positive and

adde

3. Push more flow through paths with remaining

d to negative direction

positive flow in the direction needed

Ford-Ful
fore,

Augment (
b -
fore.

retu

The For:

kerson (G, s, t)
ach edge e: flow(e) = 0
G_flow = residual graph

then

“push” the maximum

while there is an augmenting path P in

s G_flow:
flow = augment (£low,P)
update G_flow

return flow

flow, P)

bottleneck capacity of path P

ach edge e in P:

if e is a "real" edge:

else e is residual edge:
rn flow

flow(e) +=
flow (e)

d-Fulkerson algorithm runs in

b

b

O(|E|val(fx)), where val(f#) is the value of the

maximu

m flow

Edmonds-Karp Algorithm

We want to choose paths with fewest number of

edges.

Thus, we can use breadth first search in

the residual graph to find the shortest path from

s tot

Edmonds-—
fore,

Karp (G, s, t)

ach edge e: flow(e) = 0

G_flow = residual graph

while there is P in G_flow:
P = BFS(G_flow,s,t)
flow = augment (flow,P)
update G_flow

return flow

Runs in O(m?2n) due to good path choice

MAX-FLOW / MIN-CUT

Min Cut: Find a cut (partition) of the
vertices such that the sum of the capacities of
the edges is minimal.

e Max Flow: Find the flow with a maximum
value for the entire graph. Each flow must not
exceed each edge’s capacity and the flow going
into a vertex must be equal to the flow out.

e Theorem: Max Flow value = Min Cut
capacity

e Lemma: Let f be any flow and let (A, B) be
any cut. Then, the net flow across (A, B)
equals the value of f:

fle) =v(f)

HOES>
eoutofA eintoA

o Used in Ford-Fulkerson: In the
Ford-Fulkerson algoxxthm, by reaching the max
flow value, we are ensuring that: Let f be any
flow and (A, B) be any cut. Then,
v(f) = cap(A, B)

BIPARTITE MATCHING

Given bipartite graph w/ nodes that can be
partitioned to L and R & edges that has one
end in L and another in R, find the max
cardinality matching.

Create digraph G/ = (LU RU {s, t}, E')
Make all edges from L to R infinity.

Add source s to all nodes in L w/ capacity of 1
Add sink ¢ from all nodes in R w/ capacity of 1
Running max flow algorithm will find the max
number of matching

PERFECT MATCHING

e Given bipartite graph, a perfect matching
happens when each node appears in exactly
one edge in M C E

e Hall’s Theorem: Bipartite graph with
|L| = |R| has perfect matching iff
|IN(S)| > |S| for all S C L.

e Note that N(S) is the vertex in R that is
connected to S by an edge in M

CIRCULATIONS WITH DEMANDS

Multiple sources and multiple sinks, each sink
wants to get a certain amount of flow, and each
source has a certain amount of flow to give.
Reduction into max flow is adding a
for source and one for sink, with capacity of
edges as the values.

AIRLINE SCHEDULING

“root” node

o Produce efficient schedule for airline operation
activities.

e Civen a set of flight k, where each flight i

leaves origin o; at time s; and arrives at dest

d; and time f;.

Goal: Minimize flight crews

e For cach flight i, add node uj, v; and edge
(uj, v;) with lower bound & capacity 1.

e Add source s w/ demand —c & edges to u; w/
capacity 1.

e Add sink t w/ demand ¢ & edges from v; w/
capacity 1.

e If flight j doesn’t conflict (time & location)
with i, add edge (v;,uj;) w/ capacity 1

BASEBALL ELIMINATION

First, calculate the maximum possible games the
target team we are querying can win, say, m.
Next, construct a flow graph, with the following
sets of nodes: s as the source, ugyys for matches
that need to be played among pairs of other
teams, vy, for teams that are not the target, and
t for the sink. We build edges between s and
ugy, with edge weights of the number of
remaining games for each pair, edges between
ugy to teams vy and vy, since only one team can
win each match, and edges between each team x
and sink with capacity m — wg. If there is a max
flow equal to gx*, the total number of games left
between all pairs of teams excluding the target,
then it is possible for the target team to win or
tie. Else, it is not possible.

PROJECT SELECTION

Model a set of P projects, each with revenue p;,
as a DAG representing dependencies between
projects. (Edge (i,j) indicates i can only be
selected if j is as well).

v

We reduce it to minimum-cut on a new graph G/'.

To construct G/, add root source and root sink.
For each node with p; > 0, add edge (i, t) with
capacity p;, and for each node with p; < 0, add
edge (i, t) with capacity —p;.

Add precedence constraints, give each edge in G
an infinite capacity in G’.

Compute min cut (A’, B’) in G’ and declare

A’ — {s} to be optimal set of projects.

NP Problems
SHOW A PROBLEM IS NP

NP (verifier definition): Problems that are
verifiable in polynomial time (O(nk).

Therefore, to show a problem is in NP, create a
verifier for the problem that runs in polynomial,
and show that it correctly verifies the result.

NP (nondeterministic algorithm definition):
Problems that are solvable in polynomial time by
nondeterministic algorithms.

The two definitions are interchangable.

Show a problem is as hard as another
NP-Complete problem

Definition: Problem is NPC if problem is in class
NP, and as “hard” as any problem in NP.
Formally, if X is NP-complete,

X € NP A X <p Y, then Y is NP-complete.

Polynomial-time Reductions

If we have a procedure that transforms any
instance of X into an instance of Y, such that the
process takes polynomial time, and the answers to
the problem are the same, then we have reduced
X toY. X <p Y means X is reduced to Y.

Use polynomial time reductions in the
opposite way: If X <p Y, and X is not
polynomial-time, then Y is not polynomial-time.

Independent Set/ Vertex Cover / Set Cover

e Independent Set: Given a graph G = (V, E)
and an integer k, is there a subset of vertices
S C V such that |S| > k, and for each edge at
most one of its endpoints is in S?

e Vertex Set: Given a graph G = (V, E) and an
integer k, is there a subset of vertices S C V
such that |S| < k, and for each edge, at least
one of its endpoints is in S?

e Set Cover: Given a set U of elements, a
collection S7, Sg, ..., Sy, of subsets of U, and
an integer k, does there exist a collection of
< k of those sets whose union is equal to U?

NPC Algo.s & Reductions from Class:
Packing/Covering: 3-SAT <, Independent Set
<p Vertex Cover =p Set Cover

Sequencing: 3-SAT < Directed Hamiltonian
Cycle <p Hamiltonian Cycle <, Longest Path
<p Travelling Salesperson

Partitioning: 3-SAT <) Colorability Problem
<p Register Allocation Problem

3-SAT <p Subset Sum Problem <p
Partition Problem <j Interval Scheduling with
Release Time Problem

3-SAT <j Independent Set: G contains 3
nodes for each clause, one for each literal.
Connect 3 literals in a clause in a triangle,
Connect literal to each of its negations.

G contains Independent Set of size k = |®| iff ®
is satisfiable.

Proof =: Let S be independent set of size k. S
must contain exactly one node in each triangle.
Set these literals to true (and remaining variables
consistently). Truth assignment is consistent and
all clauses are satisfied.

Proof <=: Given satisfying assignment, select one
true literal from each triangle. This is an
independent set of size k.

Complexity of Reduction: Constructing k
triangles is O(k). Connecting literals to their
negations is also O (k).
polynomial time.
Independent Set Problem <, Vertex Cover
Problem: We run Vertex-Cover(G,n — k), and
we get V — S a vertex cover of size n — k. S is of
size k. Consider two nodes uw € S and v € S.
Observe that (u,v) € E since V — S is a vertex
cover. Thus, no two notes in S are joined by an
edge, which implies S is an independent set.
Vertex Cover Problem <, Independent Set
Problem: Let S be an independent set of size k.
V — S is of size n — k. Consider an arbitrary edge
(u,v). S being independent implies either, u & S
orv &s (or both), u€ V- SorveV —S (or
both). Thus, V — S covers (u, v).

Vertex Cover Problem <, Set Cover
Problem: Universe U = E. Include one set of
each node v € V: Sy = {e € E : e incident to v}.
G = (V, E) contains a vertex cover of size k iff
(U, S) contains a set cover problem of size k.
Directed Hamiltonian Cycle <), Hamiltonian
Cycle: Given a Digraph G = (V, E), construct an
undirected graph G’ with 3n nodes. Where for
ecach node ¢ = 0...n we create i;, which
connects to 7 all nodes pointing to i, i which
connected i to i;, and igyts lout which connects
to i and all nodes pointing out of i.

Numerical:

Hence reduction is

Hamilton Cycle Problem <, Travelling
Salesman Problem Given an instance
G = (V, E) of Hamiltonian Cycle Problem, create
n cities with distance function

1 if(u, v E
d(u, v) = {2 if §u 1); § E
Hamiltonian path, we can travel to all the cities
within length (of exactly) n! Otherwise, we
cannot do so without travelling a adding a 42 to
our trip, ensuring our tour length would be over g
n. TSP instance has tour of length < n iff G has
Hamiltonian Cycle.
Colorability Problem <, Register Allocation
Problem Given a Register Allocation Problem °
we can create an interference graph where nodes
are program variables, edge between u and v if
there exists an operation where both v and v are e
”live” at the same time. Observe that we can
solve the Register Allocation Problem problem iff
the interference graph is k-Colorable for any
constant k > 3
Vertex-Cover <; Hitting-Set Construct

.
If there is a

G = (V, E) in the following way. Let .
Bi.Bs. ..., Bm be sets of size 2 such that Backtracking
{u, v} = B; iff (u,v) € Efori=1,...,m where RAT IN THE MAZE ALGORITHM
m = |E|. Let V = A . Then, the hitting set
WhereIaDoor

H C A =V will be a subset of vertices |[H| < k
where for each edge (u,v) = {u,v} = B, for
some i, at least one of its endpoints is m H
because H N B; = H N {u,v} # 0. As such H is

a valid solution to the vertex cover problem. 3.

3-SAT
SAT: Given a CNF formula ¢, does it have a

satisfying truth assignment? 5.

3-SAT: SAT where each clause contains exactly 3
literals (and each literal corresponds to a
different variable).

3-SAT <p Set Cover:

4.

IHaveBeenThere:
entered.
IHaveUsedThisDoor:

Travelling Salesman

between cities,
Theorem Ham-Cyc <p TSP

of Ham-Cyc s.t.
or 2 if (u,v) ¢ E
Thus, is NP-Complete

-Colorability

Given undirected graph, can the vertices be
lue, green and no two adjacent

coloured red,
vertices have the same colour
Theorem 3-SAT <p 3-Color

sttancc of 3-SAT s.t.

each other.

thus it is also NP-Complete

Look North, if there is unused door, use it,

otherwise goto
Look East,
otherwise goto 3.
Look South,
otherwise goto 4.
Look West,
otherwise goto 5.

Unused door does not exist, go back through

the door you entered.

use

Subset-Sum

e Given natural numbers and integer W, is there
a subset that adds up to

e Theorem 3-SAT <p Subset-Sum

e Thus, it is also NP-Complete

second time,
once, except door k.

WasIThere?:
for the second time.

Hamilton Cycle

e Given undirected graph, is there a cycle that
passes through all vertices

room2,

DoorBetweenRooms:

MyImportantPath:
, roomk, doork, roomk+1

sequence:

RatAlgorithm:

Hamilton Path 1.
e Given graph, is there a path from s to t that 2.

passes through all vertices

Directed Hamilton Cycle

e Given digraph,
passes through all vertices

e Theorem Dir-Ham-Cyc < p Ham-Cyc

Has time complexity O(size of maze) and space
complexity O(size of maze) too.

Since we can create an instance of Dir-Ham-Cyc
from an instance of 3-SAT s.t. there is a
hamiltonian cycle iff ¢ is satisfiable, we know
Dir-Ham-Cyc is NP-complete.

Thus, 3-SAT < p Dir-Ham-Cyc <p Ham-Cyc <p
Ham-Path

So all above are NP-complete

Finding Small Vertex Covers

o O(2Fkn) time algorithm. .
Vertex—Cover (G, k)
if (G contains no edge) return true .
if (G contains >= kn edges) return
« false
let (u,v) be any edge of G .
a = Vertex—-Cover (G - {u}, k-1)
b = Vertex-Cover (G - {v}, k-1)
return a or b
e Each invocation takes O(kn) time. A vertex)
cover of size k has at most k(n — 1) edges since
each vertex covers at most n — 1 edges.

Independent-Set-In-A-Forest (F) {
5 <- emptyset

while (F has at least one edge) {
Let e = (u, v) be an edge in v such that v
<~ is a laf
Add v to

S
Delete from F nodes u and v,
< incident to them

and all edges

is there a directed cycle that 3.

WherelsDoor;

If WasIThere? = YES, go back through the

door you entered and modify

MylImportantPath by popping stack twice, and

goto 1

if there is unused door,

e Given a set of n cities and distance d(u, v)
is there a tour of length < D

e Construct an instance of TSP from an instance
the distance is 1 if (u,v) € E

e Construct a graph instance of 3-color from the
all literals are vertices.
dd 3 vertices, Base, True, False & connect to

e Connect negation of each literal with each
other and connect each literal to the base.
e The graph is 3 colorable iff it is 3 satisfiable,

if there is unused door, use it,

if there is unused door, use it,

Mark the room you have

Mark the door you have

rooml, doorl,

And rat has been in each room exactly once
except the room k+1, where it might be for the
and each door was used exactly

Returns YES if the room is entered

Otherwise, modify IHaveBeenThere,

IHaveUsedThisDoor, add door used and room
current to MyImportantPath,

and goto 1.

Approximation Algorithms
LOAD BALANCING

Greedy List Scheduling Algorithm

considers n jobs in a fixed order and we assign
job j to the machine that has the smallest load

so far.

A load on a machine is the sum of the subset

of jobs assigned to a specific machine.

makespan is the max load on any machine.
O(nlog m) where n is the amount of jobs and
This is a

m is the amount of machines.
2-approximation.

Greedy with Longest Processing Time
Algorithm sorts n jobs in descending order of
processing time, and then run list scheduling

algorithm (as above). This is a

4/3-approximation.

Complexity is O(nlogn) due to sorting.

DOMINATING SET

Given a graph, a dominating set contains a set of
nodes where every node in graph is neighbour of
a node in dominating set.
E.g. given n transmitters, each with d edges, we

but quickly solvable)

return S

covers v,

Vertex Cover in Bipartite Graph

The max cardinality of a matching is equal to the
min cardinality of a vertex cover.

There is a

d+1
n

d+1
n

cnlogn

show for some constant c, a set of a+1

random nodes is very likely to be a dominating
(clogn times larger than optimal solution,

chance of picking a node t that

therefore, the probability that every
node picked we fail to dominate v is

[F_, Prifail(v,t)] = (1 —
of k = Acndljr’l”, Pr(fail(v)] < 1/n¢

)k. For our case

use it,

Randomization
Rabin-Miller Algorithm

Probablistic primality test

MILLER-RABIN(n, k)
if n ==
r turn TRUE
if Is-EVEN(n)
return E
a = RANDOM- POS[TIVE INT()

it =D % 1 mod n
1 return FALSE
else
Find s, h such that s is odd

and n — 1 = s2

0

Com{)ute sequence a2 |

as* 2 as-2
a5°2 mod n

if all’clements in sequence are 1

r
else)? tt'he Fast e"Iement different from 1
is -

return TRUE
else
return FALSE

SONOUR LW N = O NG U W

I e S

Randomized Divide and Conquer:
Finding the Median
SELECT(S, K)

1 Choose a splitter a; € S
2 for each element aj €S

3 Put aj in S if a; < a;

4 Put aj in ST if aj > a;

5 if [ST|=k—1

6 return a;

7 elseif [ST| > k

8 // kth largest element is in S™
9 return SELECT(S ™~ , k)

10 else |S™|=f<k—1

11 // kth largest element is in s+
12 return SELECT(ST ,k — 1 — £)

LOCAL SEARCH
Find a local optimum rather than the global
optimum.

e Every iteration should make a choice that is
going to improve optimality.

e If no more improvement can be made, then the
local optimum is found

e Sequentially move from a current solution to a
neighbour solution that has better cost
(gradient descent)

Local Search Vertex Cover

e Start with S = V, if there is a neighbor s’
that is also a vertex cover with |S/| < |S],
replace S with s’

e This is done by deleting/adding nodes.

e Terminates after at most n steps

HOPFIELD NEURAL NETWORKS

State-flipping algo: Repeatedly flip the state of

any unsatisfied node. Terminates with stable

config after at most W = 3 |we| iterations.

€

State: s, ,qe = £1. Stable:

satisfied. Satisfied node: weight of incident good
edges < weight of incident bad edges,

wesqy sy < 0. Good edge: for edge

all nodes are

v

=(u,v)EE

e = (u,v), we X sq X sy < 0. Note: Decision
problem is always yes, no poly-time algo for
search problem.

Exact Exponential Algorithms
EXACT 3-SAT ALGORITHM
3-Sat (p) :

If p is empty return true.
(11 or 12 or 13) and p’ <- p.

If 3-Sat(p’ | 11 = true) return true.
If 3-Sat(p’ | 12 = true) return true.
If 3-Sat(p’ | 13 = true) return true.

return false.

Takes O(poly(n)3™) time.

EXACT HAMILTONIAN CYCLE
ALGORIT
Dynamic Programmmg Solution: Let c(s, v, X)
be cost of cheapest path between s and v that
visits every node in X exactly once.

PT = ming,gc(s, v, V) + c(v, s) Therefore

(s, v, X) =
c(s,v) if | X| =2
min, ¢ 3\ £s,0} (s us X\ {v})

+e(u, v if [X| > 2

Other

ROD CUTTING PROBLEM

Given a rod of length n, with varying prices per
length of rod, maximize the total amount of
money gained.

We can construct the recurrence relation

TR = max1<i<n(pi + ry,—; We compute for
smallest to largest rod lengths, final result stored
in r[n].

SEARCHING IN SORTED ARRAYS
Binary Search: O(logn) time complexity,

O(log n) space complexity if using recursion,
O(1) otherwise.

QUICKSORT
Average case complexity O(nlog(n)) because of
random pivot. Worst case O(n2

QUICKSORT(S)

1 if [S] <3
2 return INSERTION-SORT(S)
3 else
4 pivot = RANDOM-ELEMENT(S)
5 for z € S
6 if < pivot
7 APPEND(S —, x)
8 if > pivot
9 APPEND(S+, x)
10 S— = QUICKSORT(S —)
11 S+ = QUICKSORT(S+
12 return Concat(S—, [z], S+)
PARTITION(A, p, 1)
1 @ = Alr]
2 i=p-—1
3 forj =ptor—1
1 if Alj] <a
5 =41
6 Swap(A[i], A[j])
7 Swar(A[i + 1], A[r])
8 return i+ 1
Summation Rules
_ n+k
Z:;L=7n aq = Zi:m+k Gi—k-
n _ s n—k
Tiem @i = Eiom g Titk
n(n + 1
Quadratic: Z" ¥,
) n(n+1)(2n+1)
w2 BT
ot D)
n(n
Ti i =)?
Geometric: For
i1 al—rm)
r] < 1L, Xf_qar'™ = ——.
- 11—
. a(r™ —1)
[r] > 1,37 1(1.77‘71 = ¢
r—=1
Stats
e ACS, P(A) = ZZEA P(x)
. P((Z)) 0, P(S) =
. B=0 — P(AUB)—P(A)+P(B)
. P(A U B) = P(A) + P(B) — p(AN B)
e Mutually exclusive P(AN B) =0
e Independent P(A N B) = P(A)P(B)
L _ P(ANB)
Conditional P(A|B) = “p gy

Random Variable X = usually the frequency of
occurrence of something

e Expected Value E(X) = Y z; P(x;)

e Linearity of Expected Value
E(X X;) = X B(X;),

E(X +Y) = B(X) + E(Y), E(cX) = cE(X)

	Stable Matching Problem
	STRONG/WEAK INSTABILITY
	GALE-SHAPELY ALGORITHM

	Algorithm Analysis
	Using limit theorem
	MASTER THEOREM
	Analysis of Master Theorem
	Master Theorem Fails

	Greedy Algorithms
	HUFFMAN ENCODING / HUFFMAN TREE
	CACHING
	PROOFS OF OPTIMALITY

	Dynamic Programming
	UNDERSTANDING RECUR & HOW TO PRODUCE THEM
	Weighted Interval Scheduling
	Recurrence Relation & Algorithm

	KNAPSACK PROBLEM
	COIN CHANGE PROBLEM
	SEGMENTED LEAST SQUARES
	RNA SECONDARY STRUCTURE
	TOP-DOWN VS BOTTOM-UP

	Divide and Conquer
	CLOSEST PAIRS PROBLEM
	KARATSUBA TRICK
	MERGE SORT

	Network Flow
	FORD-FULKERSON
	Edmonds-Karp Algorithm
	MAX-FLOW / MIN-CUT
	BIPARTITE MATCHING
	PERFECT MATCHING
	CIRCULATIONS WITH DEMANDS
	AIRLINE SCHEDULING
	BASEBALL ELIMINATION
	PROJECT SELECTION

	NP Problems
	SHOW A PROBLEM IS NP
	Show a problem is as hard as another NP-Complete problem
	Polynomial-time Reductions
	Independent Set/ Vertex Cover / Set Cover
	3-SAT
	Subset-Sum
	Hamilton Cycle
	Hamilton Path
	Directed Hamilton Cycle
	Finding Small Vertex Covers
	Vertex Cover in Bipartite Graph
	Travelling Salesman
	3-Colorability

	Backtracking
	RAT IN THE MAZE ALGORITHM

	Approximation Algorithms
	LOAD BALANCING
	DOMINATING SET

	Randomization
	Rabin-Miller Algorithm
	Randomized Divide and Conquer: Finding the Median
	LOCAL SEARCH
	Local Search Vertex Cover
	HOPFIELD NEURAL NETWORKS

	Exact Exponential Algorithms
	EXACT 3-SAT ALGORITHM
	EXACT HAMILTONIAN CYCLE ALGORITHM

	Other
	ROD CUTTING PROBLEM
	SEARCHING IN SORTED ARRAYS
	QUICKSORT

	Summation Rules
	Stats

