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Stable Matching Problem
• n set of men and women, find a matching that

is best for all.
• Perfect Matching: All men m and women w

each appear in at most one pair of the
matching

• Unstable Pair: Perfect matching where m
prefers w and w prefers m to their current
partners.

STRONG/WEAK INSTABILITY

Strong Instability - w & m both prefer each
other over current partner
Weak Instability - w prefers m over current
partner and m prefers w or is indifferent b/w the
two, or m prefers w over current partner and w
prefers m or is indifferent b/w the two

GALE-SHAPELY ALGORITHM

initially all m and w are free
while an unmatched man m hasn’t proposed to every

↪→ woman:
w <- highest ranked woman in m’s list that m

↪→ hasn’t proposed to
if w is free:

(m,w) is engaged
else:

if w prefers m’ to m then:
m is still free

else w prefers m to m’ then:
(m,w) is engaged
m’ is set to free

Only n2 proposals possible, thus O(n2)

Algorithm Analysis
• Big-O: there exists constants c > 0 and

n0 ≥ 0 s.t. T (n) ≤ c · f(n) for all n ≥ n0
• Big-Omega: there exists constants c > 0 and

n0 ≥ 0 s.t. T (n) ≥ c · f(n) for all n ≥ n0
• Big-Theta: there exists constants c1, c2 > 0

and n0 ≥ 0 s.t. c1 · f(n) ≤ T (n) ≤ c2 · f(n)
for all n ≥ n0

Using limit theorem

• lim
f(n)
g(n)

= c > 0, f(n) is Θ(g(n))

• lim
f(n)
g(n)

= c = 0, f(n) is O(g(n))

Can prove using limit that there is no constant c
that acts as upper bound to show that
f(n) ̸= O(g(n))

MASTER THEOREM
T (n) = aT (n/b) + f(n)

• a ≥ 1: is the number of subproblems
• b > 0: is the factor by which the subproblem

size decreases
• f(n): work to divide/merge subproblems

Given the recurrence relation
T (n) = aT (n/b) + f(n), k = logba

• Case 1: If f(n) = O(nk−ϵ) for ϵ > 0, then

T (n) = Θ(nk)

• Case 2: If f(n) = Θ(nk), then T(n) = Θ(nk

log n)

• Case 3: If f(n) = Ω(nk+ϵ) for ϵ > 0 and
a · f(n/b) ≤ c · f(n) for c < 1, then
T (n) = Θ(f(n)).

Note that a · f(n/b) ≤ c · f(n) holds if

f(n) = θ(nk+ϵ)

Analysis of Master Theorem

Compare f(n) with nlogba

• Case 1: nlogba is larger, hence T(n) =

Θ(nlogba)
• Case 3: f(n) is larger, hence T(n) = Θ(f(n))

• Case 2: f(n) and nlogba are of the same size,

so T(n) = Θ(nlogbalogn)

Master Theorem Fails

Use iteration technique – Given
T (n) = T (x) + f(n), substitute n with x until a
pattern is found, then generalize it to find the
solution.

Special Cases: T (n) = aT (n − b) + nk

• If a < 1, then T (n) = O(nk).

• If a = 1, then T (n) = O(nk+1).

• If a > 1, then T (n) = O(nk · an/b).

Greedy Algorithms
Make the best choice at that time, locally
optimal choice each time will lead to globally
optimal solution.
• Cashier Algorithm: Pick the largest coin

denomination possible to use the fewest
number of coins. Optimal for 1,5,10,25,100,
but can be suboptimal.

• Interval Scheduling: Given jobs, find max
subset of non-overlapping jobs. Use Earliest
Finish Time template (sorting required ->
O(nlogn))

• Interval Partitioning: Given lectures, find
min number of rooms s.t. no 2 lectures are at
the same time in the same rooms. Use Earliest
Start Time template, allocate the room if no
conflict, otherwise add a new classroom
(sorting -> O(nlogn))

HUFFMAN ENCODING /
HUFFMAN TREE
Create trees by combining lowest frequencies first
(usually left 0 & right 1), then create a table
with the codes. Use the codes and frequencies to
determine the avrg code length. (

∑
i len(ci)pi)

CACHING
FIFO: Add cache items in order of first in and
first out
LIFO: Remove the last item in the cache when
new items are added
LRU: Remove the cache item that was least
recently used / added offline
LFD / FIF: Remove the cache item that will be
used furthest in the future the optimal offline
page replacement algorithm, OPT = LFD
FWF: Remove ALL cache items when the cache
is full and a new item is being added.
Randomized Marking: whenever you add or
request an item, it will be marked. When we
want to add a new item, we randomly remove an
unmarked item. If all items are marked and we
are adding a new item, we unmark all of the
cache items and randomly remove one.

PROOFS OF OPTIMALITY
• Greedy Stays Ahead: After each step, greedy

solution is at least as good as another
algorithm (an optimal algorithm).

• Structural: Find a structural bound that a
solution must get, then show that greedy gets
this bound.

• Exchange Argument: Transform another
solution one step at a time to the greedy
solution without hurting its quality.

• Contradiction: Assume greedy is NOT
optimal, then find a contradiction using the
optimal solution/algorithm.

Dynamic Programming
UNDERSTANDING RECUR &
HOW TO PRODUCE THEM
Similar to divide and conquer, break any given
OPT (j) into an equation made up of smaller
subproblems, using strictly smaller values for
OPT (). Use multiple cases to represent base
cases.

Weighted Interval Scheduling
Find max weight of jobs that are not overlapping.
Cannot use earliest finish time since weights
matter, so we need to take into account the
weights.
Define p(j) = largest index i < j such that job i
compatible with j.
Binary Choice: Job n is in the optimal solution
or NOT in optimal solution
Define OPT (j) = sum of the weights of all jobs
that are optimal up to job j

Recurrence Relation & Algorithm

OPT (j) =

{
vj + OPT (p(j)) j ∈ OPT

OPT (j − 1) j /∈ OPT

Weighted-Interval-Scheduling(jobs) -- BU
Sort jobs by earliest finish time
Compute p(1), ..., p(n)
M[0] = 0
for j = 1 to n

M[j] = max(v[j] + M[p(j)], M[j-1])
return M[n]

Find-Solution(j)
if j = 0: return {}
else if (v[j] + M[p(j)] > M[j-1])

return {j} U Find-Solution(p[j])
else:

return Find-Solution(j-1)

Finding optimal cost takes O(nlogn) due to
initial sorting. To find the set of jobs, we do a
second pass, taking O(n).

KNAPSACK PROBLEM
Given n objects with weights and values. We
want to fill a knapsack of max weight W s.t. it
has the max value. Define OPT (i, w) = max
profit for items 1, .., i with weight limit w.
OPT (i, w) =

0 i = 0
OPT (i − 1, w) wi > w
max(OPT (i − 1, w),
vi + OPT (i − 1, w − wi) o.w.

Knapsack(items, W)
for w = 0 to W: M[0,w] = 0
for i = 1 to n:

for w = 1 to W:
if (w[i] > w):

M[i,w] = M[i-1,w]
else:

M[i,w] = max(m[i-1,w], v[i] + M[i
↪→ -1, w-w[i]])

return M[n,W]

COIN CHANGE PROBLEM
Given an array of coin values,
V = {C1, C2, ..., Cm} Cases are coin is not
taken solution[i − 1][j], or is taken
solution[i][j − v[i]].

solution[i][j] = solution[i − 1][j]

+ solution[i][j − v[i]]

SEGMENTED LEAST SQUARES
Example of a multiway choice DP
Find a set of f(x) that fits the points the best
with not too many lines.
Define OPT (j) = min cost for p1, ..., pj
Define e(i, j) = min sum of squares for pi, ..., pj

OPT (j) ={
0 j = 0
min1≤i≤j(e(i, j) + c + M[i − 1]) o.w.

Segmented-Least-Squares(jobs)
for j = i to n

for i = 1 to j
Compute e(i,j)

M[0] = 0
for j = 1 to n

M[j] = min(e(i,j) + c + M[i-1]) for all i,
↪→ j >= 1

return M[n]
Find-Segments(j)

if j = 0: return {}
else:

Find i,j for min(e(i,j) + c + M[i-1])
return the segment and the result of Find-

↪→ Segments(i-1)

RNA SECONDARY STRUCTURE
Given RNA molecule B = b1...bn, find max base
pairs of secondary structures.
Secondary Structure Criteria:
• Watson-Crick: A-U, U-A, C-G, G-C
• No sharp turn: Separated by at least 4 bases

(bi, bj) ∈ S → i < j − 4

• Non-crossing: (bi, bj), (bk, bjl) ∈ S means

i < k < j < l not allowed.

Define OPT (i, j) =max number of base pairs in
substring bi...bj
OPT (i, j) =

0 i ≥ j − 4
OPT (i, j − 1) bj /∈ S

1 + maxt(OPT (i, t − 1)
+OPT (t + 1, j − 1)) (bt, bj) ∈ S

RNA(molecule B)
for k = 5 to n-1

for i = 1 to n-k
j = i + k
M[i,j] = max( M[i,j-1], 1+max_t(M[i,t

↪→ -1] + M[t+1,j-1]) )
return M[1,n]

Note that we take max t (aka. max value
computed from using all possible t where
i ≤ t < j − 4) such that there are no sharp turns
and (bt, bj) are Watson-Crick complements

RNA Secondary Structure is an example of
dynamic programming over an interval, time

complexity O(n3) and space complexity O(n2)

TOP-DOWN VS BOTTOM-UP
top down: calculate all the needed values.
bottom-up: create a table, might not need all the
table values.

Divide and Conquer
CLOSEST PAIRS PROBLEM
Given n points, find a pair of points with
smallest euclidian distance. Brute force takes
θ(n2) calculations.

Divide & Conquer: O(nlog2n), reduced with
merging pre-sorted list to O(nlogn)

Closest-Pair(List of Pairs)
Find line L such that it separates the points

↪→ into exactly 2 halves.
d1 = Closest-Pair(points left of L)
d2 = Closest-Pair(points right of L)
d = min(d1,d2)
Delete all points further than d from L
Sort/Merge remaining points by y-coord
Compare if any of these remaining points is

↪→ less than d
return d

KARATSUBA TRICK
m = ⌈n/2⌉ – Divide into 2 subproblems
B = number base, usually base 10 or base 2.
a, b – first half & second half of number x
c, d – first half & second half of number y
xy =

B2m(ac) + Bm((ac + bd) − ((a − b)(c − d))) + bd
Only needs 3 recursive calls, some additions and

shifts. T (n) = 3T (n/2) + θ(n) → θ(nlog23)

MERGE SORT
Divide list into 2 until there is only 1 item left,
so sorted. Merge the two sorted lists. Runs in
O(logn)

Mergesort(list)
if |list| == 1: return list
l1 = Mergesort(list[0:half])
l2 = Mergesort(list[half:end])
mergedlist = []
Compare values of each item in l1 and l2 and

↪→ add one item to merged list per
↪→ iteration (depends if increasing or
↪→ decreasing). If one is empty, then
↪→ just add the non-empty list to
↪→ mergedlist.

return mergedlist

Network Flow
FORD-FULKERSON
High-level overview
1. Given a residual graph, “push” the maximum

amount of flow possible through one path
2. Update residual graph with successfully

pushed flows subtracted from positive and
added to negative direction

3. Push more flow through paths with remaining
positive flow in the direction needed

Ford-Fulkerson(G,s,t)
foreach edge e: flow(e) = 0

G_flow = residual graph
while there is an augmenting path P in

↪→ G_flow:
flow = augment(flow,P)
update G_flow

return flow
Augment(flow, P)

b = bottleneck capacity of path P
foreach edge e in P:

if e is a "real" edge: flow(e) += b
else e is residual edge: flow(e) -= b

return flow

The Ford-Fulkerson algorithm runs in
O(|E|val(f∗)), where val(f∗) is the value of the
maximum flow

Edmonds-Karp Algorithm
We want to choose paths with fewest number of
edges. Thus, we can use breadth first search in
the residual graph to find the shortest path from
s to t

Edmonds-Karp(G,s,t)
foreach edge e: flow(e) = 0

G_flow = residual graph
while there is P in G_flow:

P = BFS(G_flow,s,t)
flow = augment(flow,P)
update G_flow

return flow

Runs in O(m2n) due to good path choice

MAX-FLOW / MIN-CUT
• Min Cut: Find a cut (partition) of the

vertices such that the sum of the capacities of
the edges is minimal.

• Max Flow: Find the flow with a maximum
value for the entire graph. Each flow must not
exceed each edge’s capacity and the flow going
into a vertex must be equal to the flow out.

• Theorem: Max Flow value = Min Cut
capacity

• Lemma: Let f be any flow and let (A, B) be
any cut. Then, the net flow across (A, B)
equals the value of f:∑
eoutofA

f(e) −
∑

eintoA
f(e) = v(f)

• Used in Ford-Fulkerson: In the
Ford-Fulkerson algorithm, by reaching the max
flow value, we are ensuring that: Let f be any
flow and (A, B) be any cut. Then,
v(f) = cap(A,B)

BIPARTITE MATCHING
• Given bipartite graph w/ nodes that can be

partitioned to L and R & edges that has one
end in L and another in R, find the max
cardinality matching.

• Create digraph G′ = (L ∪ R ∪ {s, t}, E′)
• Make all edges from L to R infinity.
• Add source s to all nodes in L w/ capacity of 1
• Add sink t from all nodes in R w/ capacity of 1
• Running max flow algorithm will find the max

number of matching

PERFECT MATCHING
• Given bipartite graph, a perfect matching

happens when each node appears in exactly
one edge in M ⊆ E

• Hall’s Theorem: Bipartite graph with
|L| = |R| has perfect matching iff
|N(S)| ≥ |S| for all S ⊆ L.

• Note that N(S) is the vertex in R that is
connected to S by an edge in M

CIRCULATIONS WITH DEMANDS
Multiple sources and multiple sinks, each sink
wants to get a certain amount of flow, and each
source has a certain amount of flow to give.
Reduction into max flow is adding a “root” node
for source and one for sink, with capacity of
edges as the values.

AIRLINE SCHEDULING
• Produce efficient schedule for airline operation

activities.
• Given a set of flight k, where each flight i

leaves origin oi at time si and arrives at dest
di and time fi.

• Goal: Minimize flight crews
• For each flight i, add node ui, vi and edge

(ui, vi) with lower bound & capacity 1.

• Add source s w/ demand −c & edges to ui w/
capacity 1.

• Add sink t w/ demand c & edges from vi w/
capacity 1.

• If flight j doesn’t conflict (time & location)
with i, add edge (vi, uj) w/ capacity 1

BASEBALL ELIMINATION
First, calculate the maximum possible games the
target team we are querying can win, say, m.
Next, construct a flow graph, with the following
sets of nodes: s as the source, uxyy, for matches

that need to be played among pairs of other
teams, vx, for teams that are not the target, and
t for the sink. We build edges between s and
uxy , with edge weights of the number of

remaining games for each pair, edges between
uxy to teams vx and vy , since only one team can

win each match, and edges between each team x
and sink with capacity m − wx. If there is a max
flow equal to g∗, the total number of games left
between all pairs of teams excluding the target,
then it is possible for the target team to win or
tie. Else, it is not possible.

PROJECT SELECTION
Model a set of P projects, each with revenue pi,
as a DAG representing dependencies between
projects. (Edge (i, j) indicates i can only be
selected if j is as well).

We reduce it to minimum-cut on a new graph G′.
To construct G′, add root source and root sink.
For each node with pi > 0, add edge (i, t) with
capacity pi, and for each node with pi < 0, add

edge (i, t) with capacity −pi.

Add precedence constraints, give each edge in G

an infinite capacity in G′.
Compute min cut (A′, B′) in G′ and declare

A′ − {s} to be optimal set of projects.
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NP Problems
SHOW A PROBLEM IS NP
NP (verifier definition): Problems that are

verifiable in polynomial time (O(nk).
Therefore, to show a problem is in NP, create a
verifier for the problem that runs in polynomial,
and show that it correctly verifies the result.
NP (nondeterministic algorithm definition):
Problems that are solvable in polynomial time by
nondeterministic algorithms.
The two definitions are interchangable.

Show a problem is as hard as another
NP-Complete problem
Definition: Problem is NPC if problem is in class
NP, and as “hard” as any problem in NP.
Formally, if X is NP-complete,
X ∈ NP ∧ X ≤P Y , then Y is NP-complete.

Polynomial-time Reductions

If we have a procedure that transforms any
instance of X into an instance of Y , such that the
process takes polynomial time, and the answers to
the problem are the same, then we have reduced
X to Y . X ≤P Y means X is reduced to Y .

Use polynomial time reductions in the
opposite way: If X ≤P Y , and X is not
polynomial-time, then Y is not polynomial-time.

Independent Set/ Vertex Cover / Set Cover

• Independent Set: Given a graph G = (V, E)
and an integer k, is there a subset of vertices
S ⊆ V such that |S| ≥ k, and for each edge at
most one of its endpoints is in S?

• Vertex Set: Given a graph G = (V, E) and an
integer k, is there a subset of vertices S ⊆ V
such that |S| ≤ k, and for each edge, at least
one of its endpoints is in S?

• Set Cover: Given a set U of elements, a
collection S1, S2, ..., Sm of subsets of U, and
an integer k, does there exist a collection of
≤ k of those sets whose union is equal to U?

NPC Algo.s & Reductions from Class:
Packing/Covering: 3-SAT ≤p Independent Set

≤p Vertex Cover ≡p Set Cover

Sequencing: 3-SAT ≤p Directed Hamiltonian

Cycle ≤p Hamiltonian Cycle ≤p Longest Path

≤p Travelling Salesperson

Partitioning: 3-SAT ≤p Colorability Problem

≤p Register Allocation Problem

Numerical: 3-SAT ≤p Subset Sum Problem ≤p
Partition Problem ≤p Interval Scheduling with

Release Time Problem
3-SAT ≤p Independent Set: G contains 3

nodes for each clause, one for each literal.
Connect 3 literals in a clause in a triangle,
Connect literal to each of its negations.
G contains Independent Set of size k = |Φ| iff Φ
is satisfiable.
Proof ⇒: Let S be independent set of size k. S
must contain exactly one node in each triangle.
Set these literals to true (and remaining variables
consistently). Truth assignment is consistent and
all clauses are satisfied.
Proof ⇐: Given satisfying assignment, select one
true literal from each triangle. This is an
independent set of size k.
Complexity of Reduction: Constructing k
triangles is O(k). Connecting literals to their
negations is also O(k). Hence reduction is
polynomial time.
Independent Set Problem ≤p Vertex Cover

Problem: We run Vertex-Cover(G,n − k), and
we get V − S a vertex cover of size n − k. S is of
size k. Consider two nodes u ∈ S and v ∈ S.
Observe that (u, v) ̸∈ E since V − S is a vertex
cover. Thus, no two notes in S are joined by an
edge, which implies S is an independent set.
Vertex Cover Problem ≤p Independent Set

Problem: Let S be an independent set of size k.
V − S is of size n − k. Consider an arbitrary edge
(u, v). S being independent implies either, u ̸∈ S
or v ̸∈ s (or both), u ∈ V − S or v ∈ V − S (or
both). Thus, V − S covers (u, v).

Vertex Cover Problem ≤p Set Cover

Problem: Universe U = E. Include one set of
each node v ∈ V : Sv = {e ∈ E : e incident to v}.
G = (V,E) contains a vertex cover of size k iff
(U, S) contains a set cover problem of size k.

Directed Hamiltonian Cycle ≤p Hamiltonian

Cycle: Given a Digraph G = (V,E), construct an

undirected graph G′ with 3n nodes. Where for
each node i = 0 . . . n we create iin which
connects to i all nodes pointing to i, i which
connected i to iin and iout, iout which connects
to i and all nodes pointing out of i.

Hamilton Cycle Problem ≤p Travelling

Salesman Problem Given an instance
G = (V,E) of Hamiltonian Cycle Problem, create
n cities with distance function

d(u, v) =

{
1 if(u, v) ∈ E
2 if(u, v) ̸∈ E

If there is a

Hamiltonian path, we can travel to all the cities
within length (of exactly) n! Otherwise, we
cannot do so without travelling a adding a +2 to
our trip, ensuring our tour length would be over
n. TSP instance has tour of length ≤ n iff G has
Hamiltonian Cycle.

Colorability Problem ≤p Register Allocation

Problem Given a Register Allocation Problem
we can create an interference graph where nodes
are program variables, edge between u and v if
there exists an operation where both u and v are
”live” at the same time. Observe that we can
solve the Register Allocation Problem problem iff
the interference graph is k-Colorable for any
constant k ≥ 3.

Vertex-Cover ≤p Hitting-Set Construct

G = (V,E) in the following way. Let
B1, B2, . . . , Bm be sets of size 2 such that
{u, v} = Bi iff (u, v) ∈ E for i = 1, . . . ,m where

m = |E|. Let V = A . Then, the hitting set
H ⊆ A = V will be a subset of vertices |H| ≤ k
where for each edge (u, v) ⇒ {u, v} = Bi for
some i, at least one of its endpoints is in H
because H ∩ Bi = H ∩ {u, v} ̸= ∅. As such H is
a valid solution to the vertex cover problem.

3-SAT

SAT: Given a CNF formula ϕ, does it have a
satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3
literals (and each literal corresponds to a
different variable).

3-SAT ≤P Set Cover:

Subset-Sum

• Given natural numbers and integer W, is there
a subset that adds up to W

• Theorem 3-SAT ≤P Subset-Sum
• Thus, it is also NP-Complete

Hamilton Cycle

• Given undirected graph, is there a cycle that
passes through all vertices

Hamilton Path

• Given graph, is there a path from s to t that
passes through all vertices

Directed Hamilton Cycle

• Given digraph, is there a directed cycle that
passes through all vertices

• Theorem Dir-Ham-Cyc ≤P Ham-Cyc

Since we can create an instance of Dir-Ham-Cyc
from an instance of 3-SAT s.t. there is a
hamiltonian cycle iff ϕ is satisfiable, we know
Dir-Ham-Cyc is NP-complete.
Thus, 3-SAT ≤P Dir-Ham-Cyc ≤P Ham-Cyc ≤P
Ham-Path
So all above are NP-complete

Finding Small Vertex Covers

• O(2kkn) time algorithm.

Vertex-Cover(G,k)
if (G contains no edge) return true
if (G contains >= kn edges) return

↪→ false
let (u,v) be any edge of G
a = Vertex-Cover(G - {u}, k-1)
b = Vertex-Cover(G - {v}, k-1)
return a or b

• Each invocation takes O(kn) time. A vertex
cover of size k has at most k(n − 1) edges since
each vertex covers at most n − 1 edges.

Independent-Set-In-A-Forest(F){
S <- emptyset
while (F has at least one edge){

Let e = (u, v) be an edge in v such that v
↪→ is a laf

Add v to S
Delete from F nodes u and v, and all edges

↪→ incident to them
}
return S

}

Vertex Cover in Bipartite Graph

The max cardinality of a matching is equal to the
min cardinality of a vertex cover.

Travelling Salesman

• Given a set of n cities and distance d(u, v)
between cities, is there a tour of length ≤ D

• Theorem Ham-Cyc ≤P TSP
• Construct an instance of TSP from an instance

of Ham-Cyc s.t. the distance is 1 if (u, v) ∈ E
or 2 if (u, v) /∈ E

• Thus, is NP-Complete

3-Colorability

• Given undirected graph, can the vertices be
coloured red, blue, green and no two adjacent
vertices have the same colour

• Theorem 3-SAT ≤P 3-Color
• Construct a graph instance of 3-color from the

instance of 3-SAT s.t. all literals are vertices.
• Add 3 vertices, Base, True, False & connect to

each other.
• Connect negation of each literal with each

other and connect each literal to the base.
• The graph is 3 colorable iff it is 3 satisfiable,

thus it is also NP-Complete

Backtracking

RAT IN THE MAZE ALGORITHM
WhereIsDoor:
1. Look North, if there is unused door, use it,

otherwise goto 2.
2. Look East, if there is unused door, use it,

otherwise goto 3.
3. Look South, if there is unused door, use it,

otherwise goto 4.
4. Look West, if there is unused door, use it,

otherwise goto 5.
5. Unused door does not exist, go back through

the door you entered.

IHaveBeenThere: Mark the room you have
entered.
IHaveUsedThisDoor: Mark the door you have
used
DoorBetweenRooms:
MyImportantPath: sequence: room1, door1,
room2, ..., roomk, doork, roomk+1

And rat has been in each room exactly once
except the room k+1, where it might be for the
second time, and each door was used exactly
once, except door k.

WasIThere?: Returns YES if the room is entered
for the second time.
RatAlgorithm:

1. WhereIsDoor;
2. If WasIThere? = YES, go back through the

door you entered and modify
MyImportantPath by popping stack twice, and
goto 1.

3. Otherwise, modify IHaveBeenThere,
IHaveUsedThisDoor, add door used and room
current to MyImportantPath, and goto 1.

Has time complexity O(size of maze) and space
complexity O(size of maze) too.

Approximation Algorithms

LOAD BALANCING
• Greedy List Scheduling Algorithm

considers n jobs in a fixed order and we assign
job j to the machine that has the smallest load
so far.

• A load on a machine is the sum of the subset
of jobs assigned to a specific machine. The
makespan is the max load on any machine.

• O(n log m) where n is the amount of jobs and
m is the amount of machines. This is a
2-approximation.

• Greedy with Longest Processing Time
Algorithm sorts n jobs in descending order of
processing time, and then run list scheduling
algorithm (as above). This is a
4/3-approximation.

• Complexity is O(n log n) due to sorting.

DOMINATING SET
Given a graph, a dominating set contains a set of
nodes where every node in graph is neighbour of
a node in dominating set.

E.g. given n transmitters, each with d edges, we

show for some constant c, a set of
cn log n

d+1
random nodes is very likely to be a dominating
set. (c log n times larger than optimal solution,
but quickly solvable)

There is a d+1
n

chance of picking a node t that

covers v, therefore, the probability that every
node picked we fail to dominate v is∏k

t=1 Pr[fail(v, t)] = (1 − d+1
n

)k. For our case

of k =
cn log n

d+1
, Pr[fail(v)] ≤ 1/nc.

Randomization
Rabin-Miller Algorithm
Probablistic primality test

Miller-Rabin(n, k)

1 if n == 2
2 return true
3 if Is-Even(n)
4 return false
5 a = Random-Positive-Int()

6 if a(n−1) ̸≡ 1 mod n
7 return false
8 else
9 Find s, h such that s is odd

10 and n − 1 = s2h

11 Compute sequence as·20 ,

12 as·21 , as·22 ,

13 . . . , as·2h mod n
14 if all elements in sequence are 1
15 return true
16 elseif the last element different from 1
17 is -1
18 return true
19 else
20 return false

Randomized Divide and Conquer:
Finding the Median
Select(S, K)

1 Choose a splitter ai ∈ S
2 for each element aj ∈ S

3 Put aj in S− if aj < ai

4 Put aj in S+ if aj > ai

5 if |S−| = k − 1
6 return ai
7 elseif |S−| ≥ k

8 // kth largest element is in S−
9 return Select(S−, k)

10 else |S−| = ℓ < k − 1

11 // kth largest element is in S+

12 return Select(S+, k − 1 − ℓ)

LOCAL SEARCH
• Find a local optimum rather than the global

optimum.
• Every iteration should make a choice that is

going to improve optimality.
• If no more improvement can be made, then the

local optimum is found
• Sequentially move from a current solution to a

neighbour solution that has better cost
(gradient descent)

Local Search Vertex Cover
• Start with S = V , if there is a neighbor S′

that is also a vertex cover with |S′| < |S|,
replace S with S′

• This is done by deleting/adding nodes.
• Terminates after at most n steps

HOPFIELD NEURAL NETWORKS
State-flipping algo: Repeatedly flip the state of
any unsatisfied node. Terminates with stable
config after at most W =

∑
e

|we| iterations.

State: snode = ±1. Stable: all nodes are
satisfied. Satisfied node: weight of incident good
edges ≤ weight of incident bad edges,∑
v:e=(u,v)∈E

wesusv ≤ 0. Good edge: for edge

e = (u, v), we × su × sv < 0. Note: Decision
problem is always yes, no poly-time algo for
search problem.

Exact Exponential Algorithms
EXACT 3-SAT ALGORITHM

3-Sat(p):
If p is empty return true.
(l1 or l2 or l3) and p’ <- p.
If 3-Sat(p’ | l1 = true) return true.
If 3-Sat(p’ | l2 = true) return true.
If 3-Sat(p’ | l3 = true) return true.
return false.

Takes O(poly(n)3n) time.

EXACT HAMILTONIAN CYCLE
ALGORITHM
Dynamic Programming Solution: Let c(s, v,X)
be cost of cheapest path between s and v that
visits every node in X exactly once.
OPT = minv ̸=sc(s, v, V ) + c(v, s) Therefore

c(s, v,X) =c(s, v) if |X| = 2
minu∈X\{s,v} c(s, u,X \ {v})

+c(u, v) if |X| > 2

Other
ROD CUTTING PROBLEM
Given a rod of length n, with varying prices per
length of rod, maximize the total amount of
money gained.
We can construct the recurrence relation
rn = max1≤i≤n(pi + rn−i We compute for

smallest to largest rod lengths, final result stored
in r[n].

SEARCHING IN SORTED ARRAYS
Binary Search: O(log n) time complexity,
O(log n) space complexity if using recursion,
O(1) otherwise.

QUICKSORT
Average case complexity O(n log(n)) because of

random pivot. Worst case O(n2).

Quicksort(S)

1 if |S| ≤ 3
2 return Insertion-Sort(S)
3 else
4 pivot = Random-Element(S)
5 for x ∈ S
6 if x < pivot
7 Append(S−, x)
8 if x > pivot
9 Append(S+, x)

10 S− = Quicksort(S−)
11 S+ = Quicksort(S+)
12 return Concat(S−, [x], S+)

Partition(A, p, r)

1 x = A[r]
2 i = p − 1
3 for j = p to r − 1
4 if A[j] ≤ x
5 i = i + 1
6 Swap(A[i], A[j])
7 Swap(A[i + 1], A[r])
8 return i + 1

Summation Rules∑n
i=m ai =

∑n+k
i=m+k

ai−k.∑n
i=m ai =

∑n−k
i=m−k

ai+k

Quadratic:
∑n

i=1 i =
n(n + 1)

2
,

∑n
i=1 i2 =

n(n + 1)(2n + 1)

6
,

∑n
i=1 i3 = (

n(n + 1)

2
)2

Geometric: For

|r| < 1,
∑n

i=1 ari−1 =
a(1 − rn)

1 − r
.

|r| > 1,
∑n

i=1 ari−1 =
a(rn − 1)

r − 1

Stats
• A ⊂ S, P (A) =

∑
x∈A P (x)

• P (∅) = 0, P (S) = 1
• A ∩ B = ∅ =⇒ P (A ∪ B) = P (A) + P (B)
• P (A ∪ B) = P (A) + P (B) − p(A ∩ B)
• Mutually exclusive P (A ∩ B) = ∅
• Independent P (A ∩ B) = P (A)P (B)

• Conditional P (A|B) =
P (A∩B)
P (B)

• Random Variable X = usually the frequency of
occurrence of something

• Expected Value E(X) =
∑

xiP (xi)
• Linearity of Expected Value

E(
∑

Xi) =
∑

E(Xi),

E(X + Y ) = E(X) + E(Y ), E(cX) = cE(X)
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