
3GC3 Final - RTX ON Edition

Math

Dot Product: a · b = xaxb + yayb + zazb = ||a||||b|| cosϕ

Cross Product: a × b =
(yazb − zayb, zaxb − xazb, xayb − yaxb) = ||a||||b|| sin(θ)n

MatMul:

For target ci,j iterate over

the ith row in the first matrix and the jth column in the
second – perform inner product and save.

Right Hand Rule: For axises, x is thumb, y is index, and z
is middle finger.

Interpolation: t is how far along the line pt is from p0 to p1
as a percentage between 0 and 1.
t = (xt − x0)/(x1 − x0) or t = (yt − y0)/(y1 − y0)
vt = (1 − t)v0 + tv1 Bi-linear Interpolation linearly
interpolate both sides, then linearly interpolate that.

Cramer’s Rule
Given Ax = b, where A ∈ Rnxn has a nonzero determinant,

then xi =
det(Ai)
det(A)

.. where Ai is A with the ith column

replaced with b.

Barycentric Interpolation (Area): From Triangle ABC,
point P (x, y, z) can be defined using u, v, w, where
P = uA + vB + wC. IMPORTANT: u + v + w = 1.

From World to Bary:

P = uA + vB + wC = u

0
4
0

 + v

0
0
0

 + w

3
0
0


x
y
z

 =

3w
4u
0

;

u
v
w

 = B

x
y
z

 =

 y/4
1 − y/4 − x/3

x/3


w = x/3, u = y/4

u + v + w = 1

v = 1 − u − w = 1 − y/4 − x/3

Transformations & Coordinate Systems

Linear Transformation:

f(

[
x
y

]
) =

[
a11 a12
a21 a22

] [
x
y

]
=

[
a11x + a12y
a21x + a22y

]
satisfies:

f(u + v) = f(u) + f(v) and f(cu) = cf(u)

In other words, origin is unchanged, straight lines remain
straight lines.

Affine Transformation Straight lines remain lines.

2D Rotations

f(p) = x

[
cos θ
sin θ

]
+ y

[
− sin θ
cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
3D Rotations
Note: All orthonormal matrices are rotation matrices.

Rotate around X f(p) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 x
y
z


Rotate around Y f(p) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 x
y
z


Rotate around Z f(p) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 x
y
z


For a generic 3D rotation: R =

ax bx cx
ay by cy
az bz cz

 Where the a∗

column is the coordinates of the object’s x′ vector, the b∗
column is the y′ vector, and the c∗ column is the z′ vector:

2D Reflection Reflect X:

[
−1 0
0 1

]
Reflect Y:

[
1 0
0 −1

]

3D Scaling

sx 0 0
0 sy 0
0 0 sz

 x
y
z

 =

sxx
syy
szz


Homogenous Coordinate 2D points represented by (x, y, z),
2D location is (x/z, y/z) | z = 1 or other value 3D points
represented by (x, y, z, w), 3D location is
(x/w, y/w, z/w) | w = 1 or other value Used for perspective
projection, z becomes depth value.

Transformation Matrix

Composite Transformation Since scaling, rotation, etc is
about origin, operations are not commutive!

Examples To rotate around an object’s centre, 1 translate
object centre to origin, 2 rotate, 3 translate back.

To scale an object along a non uniform axis, 1 rotate the
object to align with a canonical axis, 2 scale object, 3 rotate
object back.

Inversions For rotation, scaling, and translating, the inverse

of a matrix M−1 can be used. For rotation specifically,

M
−1
rotate = MT

rotate For scaling, inversion is essentially 1/s
for your scale factor. For translating, do −x.

Coordinate Systems World/Global Coordinate Only one,
unique. Each model in scene goes through Mmodel to
transform from model space to world space.

Camera / Viewing Transformations
Viewing General Steps

1. Model 3D Objects in local space
2. Put 3D object at world coordinates
3. View scene in Camera space
4. Project camera space into cannonical space
5. Transform cannonical space to screen

World Space → Camera Space: Mcam Given camera
position e, gaze direction g and ‘up’ direction t, construct
basis uwv for camera coordinate system.

w = − g
||g|| , u = t×w

||t×w|| , v = w × u

Camera Space → World Space:
1 0 0 xe
0 1 0 ye
0 0 1 ze
0 0 0 1



xu xv xw 0
yu yv yw 0
zu zv zw 0
0 0 0 1


World Space → Camera Space: Mcam =
xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1



1 0 0 −xe
0 1 0 −ye
0 0 1 −ze
0 0 0 1


3×3 Camera Matrix Mcam =

[
xcam ycam zcam

]
Use column vectors

Step 1 (left matrix): Translates camera position e to origin e.
Things originally at e are now at 0⃗.
Step 2 (right matrix): Rotates, maps basis vectors:
u 7→ (1, 0, 0), v 7→ (0, 1, 0), w 7→ (0, 0, 1)

Cannonical Space
Cannonical space is the space (x, y, z) s.t. x, y, z ∈ [−1, 1].

Orthographic Projection

Given left plane x, l, right
plane x, r, top plane y, t, bottom plane y b, near plane n, far
plane f. Recall that f , n are negative z values. See diagram.

Morth projects the view box defined above onto the canonical
space.

Morth =


2

r−l
0 0 − r+l

r−l

0 2
t−b

0 − t+b
t−b

0 0 2
n−f

− f+n
n−f

0 0 0 1


translates center to origin, scales width of all dimensions to be
2, fitting inside [-1, 1].

Perspective Projection
l, r, b, t now define the near plane XY , with n being the Z.
Far plane is only defined by f. OR use depth of field: θ =
FOV on y-axis, ratio = (r − l)/(t − b), n is near plane z, f is
far plane z.

Frustrum to Box: Recall Homogenous Coordinates. We want
frustrum 7→ box s.t. n stays near and f stays far.

P =


n 0 0 0
0 n 0 0
0 0 n + f −fn
0 0 1 0



Mper = MorthP =


2n
r−l

0 l+r
l−r

0

0 2n
t−b

b+t
b−t

0

0 0
f+n
n−f

2fn
n−f

0 0 1 0


Cannonical Space To View Port (VP)
Diagram of viewport, which has no z depth.
1. Translate x, y center from (0, 0) to
((nx − 1)/2, (ny − 1)/2). 2. Scale x, y size from (2, 2) to
(nx, ny).

Mvp =


nx
2

0 0
nx−1

2

0
ny
2

0
ny−1

2
0 0 1 0
0 0 0 1


Rasterization
Definition: finding all pixels on the screen that are occupied by
a geometric primitive.
Line Rasterization Given pixels
P0 = (x0, y0), P1 = (x1, y1), fill the pixels on the screen
between them.
f(x, y) : y = mx + c
given m = (y1 − y0)/(x1 − x0), c = (x1y0 − x0y1)/(x1 − x0)
Implicit line function:: f(x, y) : Ax + By + C = 0.
Checking sign of f(xP , yP) can determine point position
relative to line. If A > 0 ∧ B < 0, then f(xP , yP) < 0 means
point P is above the line.
Naive Implementation: Use the function y = mx + c and
iterate x from x0 to x1. No vertical lines!
Non-overlapping Triangles sharing edges: We want to
ensure no-double drawing. Assume T1, T2 share one edge. Let
a be the vertex of T1 not along this edge. Let b be the
coresponding vertex in T2. Choose offscreen point q.
T1 should be responsible of drawing the edge if q falls on the
same side of the edge as a. Likewise for T2 and b.
Proper Perspective Attribute Attribution: How we set up
the above code leads to incorect attribute interpolation when
taking perspective into account. This is because we are
interpolating on the 2d projection of the triangle and not
considering the distace of the 3d space.
Anti-Aliasing
Supersample: Screen Goal is 256x256. We instead render x4,
meaning we actually render a 1024x1024 image. Each
highresolution pixel is considered a fragment. Then, on scale
down, we can average the 16 virtual pixels into 1 screen pixel.
Can use box filter or a gaussian filter.
Multisample: Screen goal is 256x256. We still rasterize for
a higher resolution, but fragment (triangle) colour
computation is only calculated once. Then, we sample n times
from the pixel area, averaging the samples to get the true
pixel colour. Fragments here are each dot on a pixel.

Pipeline
Application

Main Program Runs on CPU Defines geometry vertex positions,
normals, texture coords, colours, etc. Sets up camera position,
orientation, projection volume Sets screen size
Copies data to GPU

Vertex Shader

Per-vertex Computation No transformation: Simply assigns input
to output (pass-through shader) Transforming vertex: Apply
MprojMcamMmodel to input Shading: determines vertex

color (Gouraud)
GPU performs parallel processing on each vertex

Culling

Backface Culling Removes primitives facing away from
camera Look at face normal / right hand rule, face normal
points in same direction as face.
View Frustrum Culling Removes geometries outside view
volume. 6 planes: near, far, left, right, top, bottom. Plane
function is f(p) = n · (p − a) = n · p + n · a = n · p + D = 0
Test if outside view volume Take bounding box of object,
e.g. a sphere with centre c, radius r. Check f(c), c’s signed
distance to plane, see if it intersects or is within frustrum.
Clipping View volume cuts primitive to avoid drawing out of
bounds
Clipping a Line Plane Function: f(p) = n · p + D or
f(p) = n · (p − c), p is some point, n is the normal, D is a
known const, c is a known point on the plane. If f(p) = 0,
then p is on the plane.
Line Function: p(t) = a + t(b − a)
Intersection Point Plug p into plane function

f(p) = n · (a + t(b − a)) + D = 0 Solve for t = n·a+D
n·(a−b)

Clipping a Triangle
Plane Function: Same as above
Intersection: Assume a, b is on one side, c is on the other side
Compute intersection points A,B using line clipping method.
Split Triangle T1 = △abA,T2 = △bBA,T3
Throw Away If f(c) ≥ 0, keep T3; if f(c) < 0, keep T1,T2

Special Case Handle zero-area triangles

Depth Testing
We need to order object rendering so things closer to camera
appear ‘ontop’ of things futher away. Multiple primities can
occupy the same fragment.
Painter’s Algorithm: Sort primitive by their depths, draw
primitives far to near. Drawbacks: Sorting is slow, many writes
to buffer Occlusion cycle: cases where no correct order
appears correct
Color and Z Buffer Two buffers, one for colour and one for
depth. Draw primitives as they come in (no sorting), check z
buffer (inited with ∞). If the primitive’s depth is closer to
the camera than what is there (smaller), update the z buffer
and override the colour buffer.
Z Fighting: is caused by two primitives sharing the same z
value. There are 2n distinct values that z can be, where n is
the number of bits for the depth value. Precision Formula:

precision = (zfar − znear)/2b We want

precision < max difference between z values Mitigation Tactices:
Good near far planes, objects not too close together.
Transparency / Alpha We can define a primitive’s
Transparency as α ∈ [0, 1], color now is RGBA.
src is the colour we want to write, dest is the colour existing
in the buffer.
Over Operation: is defined as αsrcCsrc + (1 − αsrc)Cdest.
This keeps buffer alpha after the operation=1.
Post-multiplication Set dest rgb using the over operation.
Csrc = (R,G,B).
Pre-multiplication Premultiplied alpha has Csrc already
multiplied together with αsrc when calculating the blending.
Thus, we set dest rgb. Csrc = (Rαsrc,Gαsrc, Bαsrc).
Cdest = Csrc + (1 − αsrc)Cdest.
Alpha and Depth Test
Zbuffer does not care if the fragment has Transparency –
Fragments are not ordered. However- ORDER matters
when dealing with transparency!. Thus, We draw all
opaque objects first using the depth buffer, then use painters
algorithm to draw transparent objects.

Mesh
Manifold intuition: Mesh is “watertight”, “a small
neighborhood around any point could be smoothed out into a
bit of flat surface” Manifold: Every edge is shared by exactly
two triangles. Every vertex has a single, complete loop of
triangles around it. Manifold with Boundary: Every edge is
used by either one or two triangles. Every vertex connects to
a single edge-connected set of triangles.
Manifold useful for 2d regular grid, better control of
neighboring topology, consistent triangle orientation.
Implicit vs Explicit: Explicit Defines 3D geometry via
vertices, edges, and faces. Implicit Defines 3D geometry via a
mathematical function
Pros of Explicit Representation: Efficient rendering, direct
manipulation, widely supported. Cons of Explicit
Representation: Memory-heavy, complex storage, explicit
connectivity needed. Pros of Implicit Representation:
Compact for complex shapes, smooth surfaces, ideal for
Boolean operations. Cons of Implicit Representation:
Costly rendering, harder to edit, requires function evaluation.
Euler’s Formula: V − E + F = 2(1 − g) ≈ 0 Where F is # of
triangles, E is # of edges, V is # of verticies, g is genus (# of
holes in surface) Each edge is used 2x, each triangle uses 3
edges, 2E = 3F . F = 2V,E = 3V . V: E: F ≈ 1: 3 :2

Mesh data structures

Separate Triangles (Triangle Soup) It’s just an
unorganized list of triangles. Storage cost: 72 bytes per vertex
(F triangles, 3 vertices, 3 vector components, Euler formula)
Indexed Triangle Mesh Store list of vertices, list of triangle
indices separately. Allows for deduplicating vertices,
decoupling vertex positions from connectivity. (Blendshapes)
Vertices in Bytes: V · 3 · 4 = 12V Triangles in Bytes:
F · 3 · 4 = 12F ≈ 24V Total in bytes is 36 bytes / vertex
Triangle Fans List of vertices, list of fan arrays First vertex
is center. Each following adjacent pair forms a triangle with
center coord.
Triangle Strips Three adjacent vertices form a triangle.
Streaming in new vertex. Forget the oldest vertex. Swap order
of remaining two vertices for every other triangle (don’t swap
0th, swap 1st, etc.)
Storage for fans and strips, vertices is 12V (same as ITM),
triangle fans / strips array is (F + 2) · 4 = 4F + 8 ≈ 8V + 8.
Total is 20 bytes / vertex
Triangle-Neighbor Structure Connectivity info stored in
Triangle. 3 vertices in order, 3 neighboring triangles in sync
with v. The side from v[i] to v[x] belongs to triangle i.
Efficient for adjacency-based operations like smoothing,
traversal, and region-growing, and is memory-efficient for
static meshes. Lacks granularity at the edge or vertex level,
making it unsuitable for operations requiring detailed
connectivity or dynamic topology changes. Traverse

triangles of vertex v. Pick any triangle t connects to v.
Find the neighboring triangle correspoinding to v. Set t to be
neighboring triangle. Loop until we get back to the start.
Storage: Triangles: F · (3 + 3) · 4 = 24F Vertex:
V · (1 + 3) · 4 = 16V Total is ≈ 64 bytes / vertex
Winged-Edge Structure Connectivity information stored in
edge. 2 vertices of edge, head and tail 2 neighboring triangles,
left and right prev and next edges in left triangle, ditto for
right triangle. Left tri contains lprev, [tail-head], lnext, .
Right tri contains rprev, [head-tail], rnext. Traversal given
vertex: Follows prev (aka always pick the edge to the left),
edges around v visited in ccw order. Traversal given face:
Stays on the side where face is, visit edges of face in ccw
order. Storage Edge in bytes: E · 8 · 4 = 32E (8 references,
we can remove prevs to save space and just do 2 nexts
instead) Triangle in bytes: F cot 1 · 4 = 4F Vertex in bytes:
V · (1 + 3) · 4 = 16V (1 edge ref, xyz) Total: ≈ 120V .

Half-Edge Structure Halfedge: VertexRef v (vertex half-edge
points to) TriangleRef t (triangle that the halfedge is on)
HalfEdgeRef prev, next (HalfEdgeRef pair
Storage Half-edge in bytes: (E · 2) · 5 · 4 = 40E Triangle in
bytes: F · 1 · 4 = 4F Vertex in bytes: V · (1 + 3) · 4 = 16V
Total: ≈ 144V

Mesh Editing
Edge Flip Edge Split

Edge Collapse

Subdivision

Split: insert new vertices Interpolate: recompute positions
for original and new vertices

Loop Subdivion

New vertices are added at positions of weighted sum of
original vertices on neighboring faces. For interior,
v = 3 · (A + B)/8 + (C + D)/8 where v lies on the edge
between A and B. For boundary, v = (A + B)/2. Original
vertices are reweighted based on original neighboring vertices.
vnew = (1 − nβ)voriginal + β

∑
vneighbor . Where n is v’s

degree. Implementation: split each triangle edge in any order,
flip any edge connecting a new and an original vertex.

Linear Subdivision

Input: m-gon. Output: m quads per m-gon. Face vertex:
average of face corner vertices Edge vertices: average of two
vertices at ends of edge Vertex from original mesh: keep
original.

Catmull-Clark Subdivision

Face vertex position is average of all original face corner
vertex positions Edge vertex position is average of two end
vertices and two face vertices Original vertex position is

change according to
Q+2R+(n−3)S

n
Where Q is average

position of face vertices neighboring v, R is average position
of all edge vertices connected to v, S is original vertex
position of v, n is v’s degree.

Quadric Error Simplification

Given a plane ax + by +c z + d = 0, let

u =


a
b
c
d

 then, Kplane =


a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2


Kvert =

∑
Kp∀adj. planes and Kedge−ij = Ki + Kj . The

metric to minimize is oT kijo, the distance from o(x, y, z) to

edge ij. To solve,

x
y
z

 =

k11 k12 k13
k21 k22 k23
k31 k32 k33

−1 −k14
−k24
−k34


Isotropic Remeshing

Let L be mean edge length of input mesh If an edge is too
long (> 4/3L), split it If an edge is too short (< 4/5L),
collapse it If flipping an edge improves degree of neighboring

vertices, flip it: Deviation is
∑D

A |deg(X) − 6|, if deviation
drops after a flip then flip the edge. Move vertex positions
towards average of their neighbors: For vertex P , computer
centroid C of all neighbours. Movement vector is v = C − P ,
move by 1/8v. Ignore movement in normal direction N by
using v − N(N · v) Vertex normal is weighted sum of face

normals N =
∑

neighbortrianglet t.area ∗ t.normal =∑
cross(t.edge1, t.edge2) Then normalize

Blendshapes

This is trivial, just calculate offsets with oi = (bsi − base),
and build final blendshape with shape = base +

∑
wi · oi.

Texture
Projections

Planar Projection


u
v
∗
1

 = Mt


x
y
z
1

 Where Mt is affine

transformation matrix.
Spherical Coordinates

u =
[π+atan2(y,x)]

2π
(atan2(...) = ϕ)

v =

[π−acos(z√
x2+y2+z2

)]

π
(acos(...) = θ)

atan2 ∈ [−π, π], acos ∈ [0, π] Has issues for oddly shaped
objects (eg cylinders), areas with large r are sparse vs areas
with small r.
Cylindrical Coordinates

u =
[π+atan2(y,x)]

2π
atan2(...) = ϕ

v = 1+z
2

, z ∈ [−1, 1]

Cubemap (Skybox)

u =
1+y/|x|

2
, v =

1+z/|x|
2

where |x| > |y|, |x| > |z|, x > 0

Seams If we don’t handle seams, wrapped texture will have
triangles “wrap” across the whole texture, making a bad seam
where the texture should repeat. Instead, we duplicate the
vertices on the left and right edges, such that the left seam’s
edges only apply to the triangles on it’s right, and the right
seam’s edges only apply to the triangles on it’s left.

Barycentric Interpolation

Get barycentric of p inside triangle b1, b2, b3. Interpolate uv
for p: up = b1 · ua + b2 · ub + b3 · uc

Sampling

Nearest: Self-explanatory Bilinear: Also kinda
self-explanatory, see interpolation on page 1.

Wrapping

UV is in range [0,1], deals with how to handle stuff outside of
range. Clamp: use edge colour for stuff outside range Tile:
repeatedly sample the texture (loop it)

Mipmap

Take the longest length l, the mipmap level to take is log2 l.
Level 0 is base image, each texel in level k image is avg of

2k × 2k texels in original texture.

Maps

Diffuse Map: Stores colours, RGB Normal Map: Stores
normal vectors to determine bounce directions, 3 channels
Displacement Map: Changes vertex positions by x amount
in the normal direction, 1 channel, slow. The shadow will also
have bumps Bump Map: Scales normals by x amount in the
normal direction, does not change vertex positions, 1 channel,
fast. The shadow won’t have bumps. Shadow Map: Stores
distance to first point hit by each light in a preprocessing step
(z buffer). During rendering, calculate each fragment’s
distance from light and illuminate it if it’s less than or equal
to the stored value. Otherwise, it is in shadow.

Light
2D Angle: l/r(radians) 3D Angle: A/r2(steradians)
Radiant Flux: Power (W) Irradiance: Power per square

unit of area (W m−2) Radiance: Power per square unit of

area per direction (W m−2 sr−1) Radiant intensity: Power

per direction (W sr−1)

Point light irradiance: E = Φ
4πr2

Fractional area on sphere

2π(1−cosφ)
4π

where φ is cone half-angle

Fatt = 1.0
Kc+KI ·d+K1·d2

Spotlight soft edges, inner cutoff

∅, outer cutoff γ

Material
BRDF (Bidirectional Reflectance Distr. Func.)
L(P, ω0) = Le(P, ω0) +

∫
Ω fr(P, ωi, ω0)Li(P, ωi) cos θi dωi

components L(P, ω0): Outgoing radiance @ P in ω0
direction Le(P, ω0): Emitting light radiance @ P in ω0
direction if light source, else 0

∫
Ω: Sum over all incoming

direction fr(P, ωi, ω0): How incoming light at point P in ωi
direction is reflected in ω0 direction Li(P, ωi) cos θi:
Incoming light radiance at point P in ωi direction, weighted
by cos θi.

Diffuse

light direction l = lightpos − vertexpos
diffuse_light_clr * diffuse_mat_clr * max(0, dot(n, l)) / rˆ2
(n · l = cos θ)

Specular

Exponent: lower p is more diffused, higher p is more reflective
Specular OpenGL: Find reflected light direction
r = −l + 2(l · n)n. Vertex direction Pp, camera position Pc,
find view direction
v = norm(Pc − Pp). Color on object =
specular_light_clr * specular_material_clr * max(0, dot(v, r)ˆp)

Phong

Phong shading is the sum of ambient, diffuse, and specular

lighting. (Multiplied by I/r2 to simulate light falloff)

L(P, v) = [ka + kd cos θ + ks(cos ρ)p] · I
r2

=

[ka + kd(n · l) + ks(r · v)p] · I
r2

In OpenGL:

ambient light clr * ambient material clr +
diffuse light clr * diffuse material clr * max(0, n·l) +
specular light clr * specular material clr * max(0, v · r)p

Blinn-Phong

Instead of using the viewing angle for specular, we use the
half-vector h, which is halfway between the view and light

directions. (l+v
||l+v||). When adding specular it is now

specular light clr + specular material clr * max(0, n · h)p.

Blinn-Phong can produce bad results when r · v is negative,
but n · h is positive. In this case, Blinn-Phong will be too

bright.

Gouraud

Instead of computing color based on lighting in the fragment
shader step, Gouraud does it using vertex positions using vertex
colors during the vertex shader.

Ray Tracing
Ray representation: r = o + td

Ray Gen left, right, top, bottom are coords defining bounds
of view volume. view volume is nx px wide, ny px high.

pixel(i, j) → (u, v, w) coord
u = left + (i + 0.5) ∗ (right − left)/nx;
v = bottom + (j + 0.5) ∗ (top − bottom)/ny ; w = −fl

Perspective o = e (e is camera coords); d = uu⃗ = vv⃗ − flw⃗
(uvw is camera view coords, w is away from looking location)

Orthographic o = e + uu⃗ + vv⃗ d = −w⃗

Ray-Object Intersection Sphere Point p on ray: p = o + td
Point p on sphere centred at c with radius R:

(p − c) · (p − c) − R2 = 0 Intersection points:

(o + td − c) · (o + td − c) − R2 = 0 Solve for t:

t =
−d·(o−c)±

√
(d·(o−c))2−(d·d)·((o−c)·(o−c)−R2)

d·d
Normal n at hit point p: (p − c)/R

Triangle Representation of p:
p = αA − βB + γC = (1 − β − γ)A + βB + γC Point p on
triangle ABC: p = A + β(B − A) + γ(C − A) Intersection
point: o + td = A + β(B − A) + γ(C − A)β
γ
t

 =

xA − xB xA − xC xd
yA − yB yA − yC yd
zA − zB zA − zC zd

−1 xA − xo
yA − yo
zA − zo


Rectangle (this is for xy plane) Point p on axis aligned
rect: zp = k Intersection: zp = zo + tzd = k Solve for t:
t = (k − zo)/zd Plug back, check xp ∈ [x0, x1], yp ∈ [y0, y1]
so it’s in rect.

Shading Lambertian:

res = diffuse · I · max(0, n · l)/(dist2) diffuse is obj colour,
I is light colour, dist is abs(lpos - p), l is (lpos - p) / dist.
Specular: l = (lpos − p)/|lpos − p|;
h = (l + (−d))/|l + (−d)|;
res = specular · I · max(0, pow(hṅ, 5))

Shadows shadow ray: p + tl dist: |lpos − p t ∈ [ϵ, dist] if
t < dist then it hit an object before the light and thus is in
shadow.

Extra
Spatial Data Structure

Used to quickly locate objects in space Binary space
partition (BSP) While every object is not in its own region,
split the space in half Hyperplanes; for higher dimensions
(3D), splits space similarly to Binary space partitioning.
Splitting hyperplanes can be completely arbitrary
Autopartition Candidates for splitting are based on input
primitives; when we have inputs, we just extend the planes
further to split space. K-D Tree K means number of
dimensions. 2D example: we split along the median of the X
values, then we split along the Y medians of the 2 resulting
partitions, then X, etc, etc. until every point is a median.
Octree / Quadtree Octree: Divide 3d space into 8
quadrants, keep dividing the resulting space until each has
<=1 point in each cell Quadtree: Divide 2d space into 4

quadrants, keep dividing until each space has <=1 point in
each cell

Curves
Desirable Properties Continuity: nth derivative remains

the same. C0: lines connect, C1: velocity remains the same,

C2: acceleration remains the same. Locality: Local - one
control point only impacts a small piece of the curve. Global -
one control point impacts the shape of the whole curve
Interpolation: Interpolation - Curve passes through all
control points. Approximation - Curve does not pass through
all control points, but control points determine curve. Ideally

we want at least C2 continuity, locality, and interpolation.
Disadvantages of Single Piece Polynomial Curves
• Lack of locality. Changes to points affect the whole curve.
• Runge’s Phenomenon: Oscillation with polynomial

interpolation causes increasing wiggles and overshoots near
the outer control points.

Cubic Spline

• Defined as a0 + a1t + a2t2 + a3t3.

• Properties: Locality, C2 continuity, Interpolates the control
points.

Cardinal Spline
• Defined by n + 1 control points.
• Uses positional and derivative constraints.
• Derivatives calculated using a tension constant c and the

positions of neighboring points: F (0) = p1
F ′(0) = (1 − c)(p2 − p0)/2

• Catmull-Rom is a special case of Cardinal Spline where
c = 0, implying F ′(0) = p2 − p0)/2

Properties of Different Curve Types TC = Total
Constraints

Curve Type Continuity Locality TC

Single Polynomial Cn Global –

Hermite Cubic C1 Local 4n

Cardinals C2 Local 4n

Catmull-Rom C2 Local 4n

Deriving Spline Basis for Cubic Curves

Recall the cubic functions: f(t) = a0 + a1t + a2t2 + a3t3.

f‘(t) = a1t + a2t + 3a3t2.
We also have the Hermite equations for a segment:

Take p = Ca, rearrange C−1p = a.
Now we have expressions for ai in terms of p. We can replace

all a′s in the original f(t) to be in terms of p. Rearrange that
to collect like terms of p, we get a basis.
Hermite Basis: f(t) =

p1(2t3−3t+1)+p1(−2t3+3t2)+p2(t3−22+t)+p3(t3−t2)

Where p1 = p0, p2 = p1, p3 = p‘0, p4 = p‘1
Deriving Bezier Basis
Depending on the bezier ‘degree’ n, we can calculate it via

bi,n = n!
i!(n−i)!

(ti)(1 − t)n − i.

b0,3 = (1 − t)3 b1,3 = t(1 − t)2 b2,3 = t2(1 − t)1 b3,3 = t3

Computing Positions on the Curve Using Spline Basis
Given user constraints, compute positions using the basis
functions b and constraints p:
F (t) = p0b0(t) + p1b1(t) + p2b2(t) + p3b3(t)
Computing Positions on Bezier Curves Using the de
Casteljau Algorithm Define the ‘control polynomial’, then
connect the intersections between the points.

	Math
	Transformations & Coordinate Systems
	Camera / Viewing Transformations
	Rasterization
	Pipeline
	Application
	Vertex Shader
	Culling

	Depth Testing
	Mesh
	Mesh data structures

	Mesh Editing
	Subdivision
	Loop Subdivion
	Linear Subdivision
	Catmull-Clark Subdivision
	Quadric Error Simplification
	Isotropic Remeshing
	Blendshapes

	Texture
	Projections
	Cubemap (Skybox)

	Barycentric Interpolation
	Sampling
	Wrapping
	Mipmap
	Maps

	Light
	Material
	Diffuse
	Specular
	Phong
	Blinn-Phong
	Gouraud

	Ray Tracing
	Extra
	Spatial Data Structure

	Curves

