
3GC3 Midterm - Solaris-3 Edition

Math
Dot Product:
a·b = xaxb+yayb+zazb = ||a||||b|| cosϕ

Cross
Product: a × b = (yazb − zayb, zaxb −
xazb, xayb − yaxb) = ||a||||b|| sin(θ)n

MatMul:

Multiply each pair and add

Right Hand Rule: For axises, x is
thumb, y is index, and z is middle finger.

Interpolation: t is how far along the
line pt is from p0 to p1 as a percentage
between 0 and 1.
t = (xt − x0)/(x1 − x0) or t = (yt − y0)/(y1 − y0)
vt = (1 − t)v0 + tv1
Bi-linear Interpolation

Barycentric Interpolation (Area):
α = Aa/A β = Ab/A γ = Ac/A s.t. α + β + γ = 1

Now, p(α, β, γ) = αa + βb + γc

Barycentric Interpolation (line function):
fij(x, y) = (yi − yj)x + (xj − xi)y + xiyj − xjyi

α =
fbc(xP ,yP)
fbc(xa,ya)

, β =
fac(xP ,yP)
fbc(xb,yb)

, γ =
fab(xP ,yP)
fab(xc,yc)

Transformations & Coordinate Systems
Linear Transformation:

f(

[
x
y

]
) =

[
a11 a12
a21 a22

] [
x
y

]
=

[
a11x + a12y
a21x + a22y

]
satisfies:

f(u + v) = f(u) + f(v) and f(cu) = cf(u)

In other words, origin is unchanged, straight lines remain
straight lines.

Affine Transformation Straight lines remain lines.

2D Rotations

f(p) = x

[
cos θ
sin θ

]
+ y

[
− sin θ
cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
3D Rotations
Note: All orthonormal matrices are rotation matrices.

Rotate around X f(p) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 x
y
z


Rotate around Y f(p) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 x
y
z


Rotate around Z f(p) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 x
y
z


For a generic 3D rotation: R =

ax bx cx
ay by cy
az bz cz

 Where the a∗

column is the coordinates of the object’s x′ vector, the b∗
column is the y′ vector, and the c∗ column is the z′ vector:

2D Reflection Reflect X:

[
−1 0
0 1

]
Reflect Y:

[
1 0
0 −1

]

3D Scaling

sx 0 0
0 sy 0
0 0 sz

 x
y
z

 =

sxx
syy
szz


2D Shear Matrix Horizontal shear (top edge is shifted to the

right (positive)):

[
1 sx
0 1

]
Vertical shear (right edge is

shifted up (positive)):

[
1 0
sy 1

]

3D Shear Matrix

Shear on YZ Plane:

 1 0 0
sy 1 0
sz 0 1



Shear on XZ Plane:

1 sx 0
0 1 0
0 sz 1


Shear on XY Plane:

1 0 sx
0 1 sy
0 0 1


Homogenous Coordinate 2D points represented by (x, y, z),
2D location is (x/z, y/z) | z = 1 or other value 3D points
represented by (x, y, z, w), 3D location is
(x/w, y/w, z/w) | w = 1 or other value Used for perspective
projection, z becomes depth value.

Transformation Matrix

Composite Transformation Since scaling, rotation, etc is
about origin, operations are not commutive!

Examples To rotate around an object’s centre, 1 translate
object centre to origin, 2 rotate, 3 translate back.

To scale an object along a non uniform axis, 1 rotate the
object to align with a canonical axis, 2 scale object, 3 rotate
object back.

Inversions For rotation, scaling, and translating, the inverse

of a matrix M−1 can be used. For rotation specifically,

M
−1
rotate = MT

rotate For scaling, inversion is essentially 1/s
for your scale factor. For translating, do −x.

Coordinate Systems World/Global Coordinate Only one,
unique. Each model in scene goes through Mmodel to
transform from model space to world space.

Camera / Viewing Transformations
Rendering steps:

Viewing General Steps

1. Model 3D Objects in local space
2. Put 3D object at world coordinates
3. View scene in Camera space
4. Project camera space into cannonical space
5. Transform cannonical space to screen

World Space → Camera Space: Mcam Given camera
position e, gaze direction g and ‘up’ direction t, construct
basis uwv for camera coordinate system.

w = − g
||g|| , u = t×w

||t×w|| , v = w × u

Camera Space → World Space:
1 0 0 xe
0 1 0 ye
0 0 1 ze
0 0 0 1



xu xv xw 0
yu yv yw 0
zu zv zw 0
0 0 0 1


World Space → Camera Space: Mcam =


xu yu zu 0
xv yv zv 0
xw yw zw 0
0 0 0 1



1 0 0 −xe
0 1 0 −ye
0 0 1 −ze
0 0 0 1


Step 1 (left matrix): Translates camera position e to origin e.
Things originally at e are now at 0⃗.
Step 2 (right matrix): Rotates, maps basis vectors:
u 7→ (1, 0, 0), v 7→ (0, 1, 0), w 7→ (0, 0, 1)

3×3 Camera Matrix Mcam =
[
xcam ycam zcam

]
Use column vectors

Step 1 (left matrix): Translates camera position e to origin e.
Things originally at e are now at 0⃗.
Step 2 (right matrix): Rotates, maps basis vectors:
u 7→ (1, 0, 0), v 7→ (0, 1, 0), w 7→ (0, 0, 1)

Cannonical Space
Cannonical space is the space (x, y, z) s.t. x, y, z ∈ [−1, 1].

Orthographic Projection

Given left plane x, l,
right plane x, r, top plane y, t, bottom plane y b, near plane
n, far plane f. Recall that f , n are negative z values. See diagram.

Morth projects the view box defined above onto the
cannonical space.

Morth =


2

r−l
0 0 0

0 2
t−b

0 0

0 0 2
n−f

0

0 0 0 1



1 0 0 − r+l

2
0 1 0 − t+b

2
0 0 1 −n+f

2
0 0 0 1



=


2

r−l
0 0 − r+l

r−l

0 2
t−b

0 − t+b
t−b

0 0 2
n−f

− f+n
n−f

0 0 0 1


Right: translate center to origin
Left: scales width of all dimensions to be 2, fitting inside [-1,
1].

Perspective Projection

l, r, b, t now define the
near plane XY , with n being the Z. Far plane is only defined
by f. OR use depth of field: θ = FOV on y-axis,
ratio = (r − l)/(t − b), n is near plane z, f is far plane z.

Frustrum to Box: Recall Homogenous Coordinates. We want
frustrum 7→ box s.t. n stays near and f stays far.

P =


n 0 0 0
0 n 0 0
0 0 n + f −fn
0 0 1 0



Mper = MorthP =


2n
r−l

0 l+r
l−r

0

0 2n
t−b

b+t
b−t

0

0 0
f+n
n−f

2fn
n−f

0 0 1 0


Cannonical Space To View Port (VP)

Diagram of viewport, which has no z depth.
1. Translate x, y center from (0, 0) to
((nx − 1)/2, (ny − 1)/2). 2. Scale x, y size from (2, 2) to
(nx, ny).

Mvp =


nx
2

0 0
nx−1

2

0
ny
2

0
ny−1

2
0 0 1 0
0 0 0 1



Rasterization
Definition: finding all pixels on the screen that are occupied by
a geometric primitive.
Line Rasterization Given pixels
P0 = (x0, y0), P1 = (x1, y1), fill the pixels on the screen
between them.
f(x, y) : y = mx + c
given m = (y1 − y0)/(x1 − x0), c = (x1y0 − x0y1)/(x1 − x0)
Implicit line function:: f(x, y) : Ax + By + C = 0.
Checking sign of f(xP , yP) can determine point position
relative to line. If A > 0 ∧ B < 0, then f(xP , yP) < 0 means
point P is above the line.
Naive Implementation: Use the function y = mx + c and
iterate x from x0 to x1. No vertical lines!
Digital Difference Analyser DDA: Precomputes step size
for both Y and X from line function. Marches in direction
based on which value changes slower: if y changes slower
march in the x direction and vice versa.

drawDDA(p0, p1):
ranges = p1-p0
numSteps = (ranges.x > ranges.y)

? ranges.x
: ranges.y

delta = ranges / numSteps
p = p0
for i in 0..numSteps:

fill pixel (round(p.x), round(p.y))
p += delta

Midpoint Algorithm: Assume x0 < x1. Otherwise, swap
P0, P1. Seperate cases based on m either
∈ {(−∞,−1], (−1, 0], (0, 1], (1,∞)}. The case will affect
which pixels are the candidate pixels.

For following cases, assume m ∈ [0, 1).
Assume (x, y) is drawn. Compute the midpoint of the next
candidates, in this case (x + 1, y + 0.5)
To check if point is above line, calculate if
f(x + 1, y + 0.5) > 0. Otherwise, count it as below. Select the
candidate and draw it.

drawMidpointTraditional(x0, y0, x1, y1):
y = y0
for x=x0; x<=x1; x++:

fill pixel (x,y)
float f = (y0-y1)*(x+1)

+ (x1-x0)*(y+0.5)
+ x0*y1
- x1*y0

if (f < 0):
y++;

Midpoint Incremental Algorithm: We don’t need to
evaluate f at every case, since m is constant. evaluate f at
the first midpoint. We know that our next candidates are
either on the same level or above the last candidate. If we
increase diagonal, then
f(x + 1, y + 1) = f(x, y) + (y0 − y1) + (x1 − x0). If we
increase horizontal, then f(x + 1, y) = f(x, y) + (y1 − y0)

drawMidpointIter(x0, y0, x1, x0):
p = p0
f = (y0 - y1)*(x0 + 1)

+ (x1 - x0)*(y0+0.5)
+ x0*y1
- x1*y0

y = y0
for x = x0; x <= x1; x++:

fill pixels[x][y]
if (f < 0): //line above M

f += (x1-x0) + (y0-y1)
y++;

else: //line below M
f += y0-y1

Bresenham Algorithm:

drawBresenham(x0, y0, x1, y1):
deltaX = x1-x0
deltaY = y1-y0
D = 2*deltaY - deltaX
fill pixel (x0,y0)
y = y0

for x=x0+1; x<=x1; x++:
//Diagonal Increment
if D > 0:

y++
D += 2*(deltaY-deltaX)

//H Increment
else:

D += 2*deltaY
fill pixel (x,y)

Triangle Rasterization
First, we find the bounding box (rectangle) of the triangle
using the min and max positions of all 3 vertexes. Then, we

iterate over every pixel (n2), checking if the barycentric
coordinate of the pixel lies inside the triangle.
We can tell if it’s outside if all coordinates are ≥ 0. If one is
not, then it is outside, and we skip drawing.
The rest of the following code interpolates the colour of the
pixels (p0 is red, p1 is green and p2 is blue).

void DrawTriangle(int x0, int y0,
int x1, int y1,
int x2, int y2,
std::vector<std::vector<std::string>> &pixels) {

// Bounding box
int minx = std::min({x0, x1, x2});
int maxx = std::max({x0, x1, x2});
int miny = std::min({y0, y1, y2});
int maxy = std::max({y0, y1, y2});

// Precompute terms for barycentric coordinates
float F01 = (y0-y1)*x2 + (x1-x0)*y2 + x0*y1 - x1*y0;
float F12 = (y1-y2)*x0 + (x2-x1)*y0 + x1*y2 - x2*y1;
float F20 = (y2-y0)*x1 + (x0-x2)*y1 + x2*y0 - x0*y2;

// Vertex colors: p0 - Red, p1 - Green, p2 - Blue
int R0 = 255, G0 = 0, B0 = 0; // p0 - Red
int R1 = 0, G1 = 255, B1 = 0; // p1 - Green
int R2 = 0, G2 = 0, B2 = 255; // p2 - Blue

// Loop over bounding box pixels
for (int x = minx; x <= maxx; ++x) {

for (int y = miny; y <= maxy; ++y) {
// Calculate barycentric coordinates
float f01 = (y0-y1)*x + (x1-x0)*y + x0*y1 - x1*y0;
float f12 = (y1-y2)*x + (x2-x1)*y + x1*y2 - x2*y1;
float f20 = (y2-y0)*x + (x0-x2)*y + x2*y0 - x0*y2;
float b0 = f12 / F12, b1 = f20 / F20, b2 = f01 / F01;
// Check if inside the triangle
if (b0 >= 0 && b1 >= 0 && b2 >= 0) {

// Interpolate color
int R = b0*R0 + b1*R1 + b2*R2;
int G = b0*G0 + b1*G1 + b2*G2;
int B = b0*B0 + b1*B1 + b2*B2;
// Set pixel color
pixels[y][x] = std::to_string(R) + ’,’ +

std::to_string(G) + ’,’ +
std::to_string(B);

}}}}

Non-overlapping Triangles
sharing edges: We want to ensure
no-double drawing. Assume T1, T2 share
one edge. Let a be the vertex of T1 not
along this edge. Let b be the coresponding
vertex in T2. Choose offscreen point q.
T1 should be responsible of
drawing the edge if q falls on the same side
of the edge as a. Likewise for T2 and b.
Proper Perspective
Attribute Attribution: How we set up
the above code leads to incorect attribute
interpolation when taking perspective into account. This is
because we are interpolating on the 2d projection of the
triangle and not considering the distace of the 3d space.
We can interpolate using the following code, which scales
based on a scaling metric.

float Rs = 60*(R0/w0) + b1*(R1/w1) + b2*(R2/w2);
float Gs = b0*(G0/w0) + b1*(G1/w1) + b2*(G2/w2);
float Bs = 60*(B0/w0) + b1*(B1/w1) + b2*(B2/w2);
float Is = b0*(1/w0) + b1*(1/w1) + b2*(1/w2);
float R = Rs / Is;
float G = Gs / Is;
float B = Bs / Is;

Anti-Aliasing
Supersample: Screen Goal is 256x256. We instead render x4,
meaning we actually render a 1024x1024 image. Each
highresolution pixel is considered a fragment. Then, on scale
down, we can average the 16 virtual pixels into 1 screen pixel.
Can use box filter or a gaussian filter.
Multisample: Screen goal is 256x256. We still rasterize for
a higher resolution, but fragment (triangle) colour

computation is only calculated once. Then, we sample n times
from the pixel area, averaging the samples to get the true

pixel colour.
Fragments here are each dot on a pixel.

Pipeline
Application
Main Program
Runs on CPU Defines geometry vertex
positions, normals, texture coords, colours,
etc. Sets up camera position, orientation,
projection volume Sets screen size
Copies data to GPU

Vertex Shader
Per-vertex
Computation No transformation: Simply
assigns input to output (pass-through
shader) Transforming vertex: Apply
MprojMcamMmodel to input Shading:

determines vertex color (Gouraud)
GPU
performs parallel processing on each vertex

Culling
Backface Culling

Removes
primitives facing away from camera
Look at face normal / right hand rule, face
normal points in same direction as face.

View Frustrum Culling

Removes
geometries
outside
view
volume. 6 planes: near, far,
left, right, top, bottom. Plane function is
f(p) = n · (p − a) = n · p + n · a = n · p + D = 0 Test if
outside view volume Take bounding box of object, e.g. a
sphere with centre c, radius r. Check f(c), c’s signed distance
to plane, see if it intersects or is within frustrum.

Clipping

View volume cuts
primitive to avoid drawing out of bounds
Clipping a Line Plane Function:
f(p) = n · p + D or f(p) = n · (p − c),
p is some point, n is the normal, D is
a known const, c is a known point on the
plane. If f(p) = 0, then p is on the plane.
Line Function: p(t) = a + t(b − a)
Intersection Point Plug p into plane
function f(p) = n · (a + t(b − a)) + D = 0

Solve for t = n·a+D
n·(a−b)

Clipping a Triangle
Plane Function: Same as above
Intersection:
Assume a, b is on one side, c
is on the other side Compute
intersection points A,B
using line clipping method.
Split Triangle
T1 = △abA,T2 = △bBA,T3
Throw Away If f(c) ≥ 0, keep
T3; if f(c) < 0, keep T1,T2
Special Case
Handle zero-area triangles

Depth Testing
We need to order object
rendering so things closer
to camera appear ‘ontop’ of
things futher away. Multiple
primities can occupy the same
fragment.
Painter’s Algorithm: Sort primitive by their depths, draw
primitives far to near. Drawbacks: Sorting is slow, many writes
to buffer Occlusion cycle: cases where no correct order
appears correct
Color and Z Buffer Two buffers, one for colour and one for
depth. Draw primitives as they come in (no sorting), check z
buffer (inited with ∞). If the primitive’s depth is closer to
the camera than what is there (smaller), update the z buffer
and override the colour buffer.

Z Fighting: is caused by two primitives sharing the same z
value. There are 2n distinct values that z can be, where n is
the number of bits for the depth value. Precision Formula:

precision = (zfar − znear)/2b We want

precision < max difference between z values Mitigation Tactices:
Properly set the near and far planes increase bit count for
depth value, Don’t put objects too close to each other in
scene.

Transparency / Alpha We can define a primitive’s
Transparency as α ∈ [0, 1], color now is RGBA.

src is the colour we want to write, dest is the colour existing
in the buffer.

Over Operation: is defined as αsrcCsrc + (1 − αsrc)Cdest.
This keeps buffer alpha after the operation=1.

Post-multiplication Set dest rgb using the over operation.
Csrc = (R,G,B).

Pre-multiplication Premultiplied alpha has Csrc already
multiplied together with αsrc when calculating the blending.
Thus, we set dest rgb. Csrc = (Rαsrc,Gαsrc, Bαsrc).

Cdest = Csrc + (1 − αsrc)Cdest.

Alpha and Depth Test

Zbuffer does not care if the fragment has Transparency –
Fragments are not ordered. However- ORDER matters
when dealing with transparency!. Thus, We draw all
opaque objects first using the depth buffer, then use painters
algorithm to draw transparent objects.

Example Questions
2. What are the limitations of painter’s algorithm?

1. Cyclic Overlap: It fails with overlapping or cyclically
overlapping polygons (e.g., A in front of B, B in front of C,
and C in front of A).

2. Intersecting Polygons: It struggles with intersecting
polygons, as ordering becomes ambiguous.

3. High Sorting Cost: Sorting polygons by depth is
computationally expensive, slowing performance in
complex scenes.

4. Overdraw and No Depth Information: Without
per-pixel depth tracking, it may redraw pixels
unnecessarily, reducing efficiency.

5. Inaccurate Transparency: It handles transparency
poorly, as color compositing requires depth per pixel.

1. Given triangle ABC, Barycentric coord given by
(1, 0, 0), (0, 1, 0), (0, 0, 1). Point P is (0.13, 0.17, 0.7) Since
barycentric, the larger the number is to 1, the closer it is to
that point in the triangle.
4. What is the composite transformation matrix to revert the
following sequence of transformations to a 3D object?
First, the object is rotated around x-axis by rx; then it is
scaled by s; then it is translated by (x,y,z) to origin; then it is
rotated around y-axis by ry; lastly, the object is translated
back to its original position;

MTrotate −
x(rx),M−1scale(s),Mtranslate(−x,−y,−z),MTrotate −
y(ry),M−1translate(−x,−y,−z)
5. Triangles in the figure below are described as:

Following counter-clockwise order, backface culling will
remove which faces? (Use right hand rule where fingers curl
and thumb points away from you to remove the faces).
Remove T2, T3
6. What is the purpose of the model matrix in the graphics
pipeline?
Transform objects from local space to global world space.
The Digital Differential Analyzer (DDA) algorithm improves
efficiency by incrementally calculating pixel positions using
floating-point arithmetic, reducing redundant calculations.
Unlike the naive approach, DDA avoids costly multiplication
operations, making it faster for line rasterization.
Additionally, it produces smoother lines by directly handling
fractional increments.

8b. What is the main benefit of the Bresenham
algorithm compared to the Midpoint Incremental line
rasterization method?
The Bresenham algorithm optimizes line drawing by using
only integer arithmetic, which is faster than the floating-point
calculations of the Midpoint method. It also requires fewer
computations per pixel, enhancing performance, and provides
more accurate pixel positions for steeper line slopes.
9a. What is computed color of pixels without antialiasing?
Without antialiasing, the color of each pixel is typically
computed based on the color at the center of the pixel.

9b. What is computed colors of pixels, using mutlisample
antialiasing?
The final pixel color is the average of the sampled colors. This
averaging smooths out jagged edges by blending colors from
the edges of objects with the background, giving a smoother
appearance without fully rendering the entire scene at a
higher resolution.
11. Given line function: f(x, y) = 3y − 2x − 1, rasterize line
segment from (1, 1) to (7, 5) using the midpoint algorithm. At
the first step, pixel (1, 1) is drawn. Mark the pixels that
should be drawn and the midpoint sample positions evaluated:
Midpoint can be between the two squares, either same height
or above, based on line. Input the midpoint between the two
points:
M1 = (2, 1.5), f(M1) = 3(1.5) − 2(2) − 1 = −0.5 Since its
negative, draw the above square in. Draw (2, 2). Follow these
steps.
12. Triangle ABC, where vertex A, B, C’s barycentric
coordinates are represented in (α, β, γ) are
(1, 0, 0), (0, 1, 0), (0, 0, 1). A,B,C’s (x,y,z) positions in 3D
space are (0, 0, 0), (10, 0, 0), (0, 20, 0). Point P’s barycentric
coordinates are (0.5, 0.15, γp). What is Point P position?
γp = 1−0.5−0.15 = 0.35, P (0.5, 0.15, 0.35) = αA+βB+γC.
P (0.5, 0.15, 0.35).
What are the areas of triangle ABC, PBC, PCA and PAB?
ABC = bh/2 = 100.
α = PBC/ABC, 0.5 = PBC/100, PBC = 50.
β = PCA/ABC, 0.15 = PCA/100, PBC = 15.
γ = PAB/ABC, 0.35 = PAB/100, PAB = 35.

Transformation function f(

[
x
y

]
) rotates input

[
x
y

]
clockwise by

θ. Thus f(

[
1
0

]
) =

[
cos(−θ)
sin(−θ)

]
i.e transform (1,0) to red point

and f(

[
1
0

]
) =

[
−sin(−θ)
cos(−θ)

]
i.e transform (0,1) to green point.

For any point p: p =
[
x y

]
= x

[
1
0

]
+ y

[
0
1

]
. This

f(p) = f(

[
x
y

]
) = xp

[
cos(−θ)
sin(−θ)

]
+ yp

[
−sin(−θ)
cos(−θ)

]
. Thus the

clockwise rotation matrix is

[
cos(−θ) − sin(−θ)
sin(−θ)cos(−θ)

] [
xp
yp

]
.

14. Orthographic projection, view volume is defined as Left
l = −5, Right r = 5, Top t = 6, Bottom b = 1, Near n = −8,
Far f = −28. To convert this view volume to canonical space
box [−1, 1], what is the Morth matrix?
sx

r − l
=

−1

10
,

sy

t − b
=

1

5
,

sz

n − f
=

1

20
.

−(r + l)/sx = 0,−(t + b)/sy = 7,−(n + f)/sz = 36.

Morth =



−1

10
000

0
1

5
00

00
1

20
0

0001




1006
0107
00136
0001



15. Z-buffer and Color buffer, the closer z values (closer to 0)
are closer to camera, so they overlap the farther colours, fill in
the colours based on their distance from camera then away
from camera. For color buffer it should be the updated
colours based on the z-buffer.
16. A camera is put in world space (-1,0,0) looking toward
(1,0,0) direction. The up direction is (0,1,0).

Contruct the camera coordinate based on the up and view
direction. Specify the x,y,z axis and the origin of the camera
coordinate in the world.

w = −1 ·

1
0
0

 =

−1
0
0

. u =

0
1
0

 ·

−1
0
0

 =

0
0
1

.

v =

−1
0
0

 ·

0
0
1

 =

0
1
0

.

Based on the camera coordinate in world space, write out
4 × 4 matrix transforming from camera space to world space?

Mcam =


100 − 1
0100
0010
0001

 ·


1001
0100
0010
0001

 =


0010
0100

−100 − 1
0001


For point p at world space (4, 5, 6), what is p’s coordinate in
the camera space?

p =


0010
0100

−100 − 1
0001

 ·


4
5
6
1

 =


6
5

−5
1

 = (6, 5,−5, 1)

	Math
	Transformations & Coordinate Systems
	Camera / Viewing Transformations
	Rasterization
	Pipeline
	Application
	Vertex Shader
	Culling
	Backface Culling
	View Frustrum Culling
	Clipping

	Depth Testing
	Example Questions

