Programming languages
Important languages
Fortran — First lang w/ a compiler, syntax is whatever the
compiler accepts, no formal standards set. Lisp — Computing
abstract / symbolic stuff, dynamic scope for variables.
COBOL — Used for “business” programming, verbose and
made to read like English, good layout capabilities. Algol 60
First language with a standard (BNF invented for this),
designed by committee. ML — Abstract data types, hides
details about types from programmer, can’t lie to compiler,
tradeoff of more debugging for less hassle down the line.

Esoteric languages

Esolangs are programming languages designed to experiment
with weird ideas, made intentionally hard to program in, or as
a joke, rather than practical use. Esolangs are known for
breaking modern coding conventions to possible innovate with
new ideas. Some examples of esolangs are Shakespeare,
Befunge (2D text syntax), LOLCODE, Malbolge (designed to
be unwritable - ‘crazy operation’, base-three arithmetic, and
self-altering code), INTERCAL (satire of programming
languages and new notation), Brainfuck (minimal, unreadable
turing machine simulator), and PIET (syntax as blocks of
colour in an image).

Syntax

How a programming language “looks”. Often a string, but can
be a picture (Monet), or a grid of cells (Excel).

BNF

Formal specification of string-based syntaxes.

| Az(e)
I (e (o)
I ()

Dynamic Semantics
Substitution
[z +— s]lz =5

Evaluation Strategies

Can’t evaluate anything under a lambda in both of the below
strategies.

Full Beta-Reduction:
beta-reduce in any order:

zlv/xz] = v

non-deterministic.

Normal Order:

reduce the leftmost, outermost expression until no more
expressions.

Call by Name

— Evaluate function calls without evaluating arguments.
when the outermost term is a lambda.

Stop

el — e}

ereg — efea (Az.ej)eg — eqlen/x] fst(eg, en) — en

/
el — ey

snd(eq, eg) — ey andejes — andejey andtrueey — ep

and false ey — false
e1 — e/l

if e then eg else eg — if ¢} then eg else eg

if true then e else ez — ep if false then eg else ez — e3

letz = e] iney — egle] /a]
Call by Value

— Evaluate arguments to function calls before evaluating the
function call itself. Stop when the outermost term is a

lambda. This is the evaluation strategy most languages adopt.
el — 63 eg — 6/2
ejeg — e/1e2 vieg — 1/1(3,2 (Az.eq)vg — eqvg/x]
ep — ey eg — eg

7 7
(e1,e2) = (eq,e2) (vi,ez) = (vi,ey) fst(vy,vp) = vy
el — ell

snd(vy,vg) — vy andejeg — andefjey andtruees — eg

and false ey — false
e] — 5,1

if e then eg else eg — if E’l then eg else eg

if true then eg else ez — eg if falsethen eg else ez — e3

o — o

let x = eq ineg Hletz:ellinez

let x

vy ineg — egfvy /]

3MI3 Final — Year of the Rabbit Edition

Church Encodings
Booleans

tru At Af.t

fls = Xt A f.f

and = Ab.Ac.bc fls
or = Ab.Xc.b tru ¢ not = Ap.p fls tru

Numerals

2 = As"kz‘s‘(sz) plus Am.An. AfAx.m f (n f x)
succ = An.Af.Az.f (n f x)

mult = Am. An.Af.Az.m (n f) =

pred = AnAfAz.n (Ag.Ah.h (g £)) Aw.z) (Au.w)
pred = Am.fst(msszz) where
= Ap.pair(sndp)(pluscy (sndp)) and zz = paircgcq

minus = Am.An.(n pred) m
iszero = (minus n m)

iszero = Am.m(Az. fls)tru
Pairs

pair = Az Ay.Az.zzy
fst = Ap.p(Az.Ay.z)

snd = Ap.p(Az.Ay.y)
Either

left = Xa.Al.Ar.la
right = Ab.Al.A7r.7b
Lists

nil = Ac.An.n

cons = Ah.At.Ac.An.ch (tcn)
isnil = AL.L(Ah.At. fls) tru

head = Al.L(Ah.At.h) fls

tail = Al Ac.An.l(Ah.At.Ag.gh(te))(At.n)(Ah.\t.t)

Trees

leaf = Az . Ab.Al.l, x
branch = Axz.Ay.\b.AlL.,
Maybe

nothing = An.\j.n
just = Aa.An.Nj.ja
isNothing = An.n(X true)(X false)
isJust = An.n(X, false) (X, true)
maybe = Adef.Af.Am.mdef(Aa. f a)

b, (z,1,b), (y,1,b)

Domain Specific Languages (DSLs)

Shallow

Implement the DSL as functions. Ex. for pic DSL, stuff is
given as functions. Easy to add new functions, but can suck if
you want to extend to more interpretations since you can’t
reuse functions. Pros:

easy extenslblllty of terms

Has nice syntax due to being programmed in an established
language

piggyback on host language’s type system (pro in some
cases)

Cons:

e no reuse of ASTs

e Hard to re-interpret terms with other meanings (e.g. hard
to change format of a picture)

things are immediately evaluated

piggyback on host language’s type system (con in some
cases), e.g. if you want to move your dsl to another
language

Cannot easily perform program transformations (e.g.
optimizations)

Deep
Datatype to represent syntax. Can easily write new
interpretation functions. But annoying to add new operations
because all interpretations need to be extended. Pros:

® casy reuse of programs written in the DSL

e custom validity system

e simulatable

e domain-specific interpretations, e.g. tool creation, analysis,

re-writing, optimization passes, etc.
Can easily perform program transformations (e.g.
optimizations)

ns:
Ugly syntax

extra tag i.e. the DSL is a little less efficient

term set is typically not ’open’

we can’t easily extend a language without recompilation
and defining interpreation of new terms for all previously
defined operators

expression problem (? related to above?)

Tagless

Best of shallow and deep. The language is the interpretation.

If we want to add a new operation we can easily add a new

class that extends the original. To create a new interpretation

just create an instance of the class. Pros:

e Both of the pros from shallow and deep embeds

e Programming against an abstract interface is nice

Cons:

e Speed: the compiler does not know what you are working
against with an abstract interface so compiler optimizations
might not work properly

Static Semantics (Typing)

Type safety is an assurance that computations do not lead to
mismatched types in other computations — program execution
does not lead to ill-defined states. A type system consists of
two pieces; judgements and inference rules. A judgement is
some property that the type system lets us show; for instance,
we might have a judgement that asserts that some term x has
type A. The inference rules allow us to actually prove that
some judgement holds. For instance, this is how one might
prove that (true, false) has type Bool X Bool. DSLs are
particularly neat because they allow for domain-specific:
analysis, validation, interpretation, optimization, tooling, etc.

Progress

Definition: a well-typed term is either a value or, or may be
evaluated once under single-step operational semantics. That
is, a well-typed term is not stuck.

Preservation
Definition: if a term is well-typed, and we evaluate it once
under single-step operational semantics, the resulting term is
also well typed.
Context
Unification
Unification Algorithm
unify(C) =
if C = O, then []
let {S=T}JC’' =C in
=T
then unify(C’)
if S =X and X ¢ FV(T) (If S is unbounded in T:)
then unify([X — S]C’ o [X — T]
if T = X and X ¢ FV(S) (If T is unbounded in S:)
then unify([X — T]C’) o [X + 5]
if S=S51 — Sg and T =Ty — Ty
then unify(C’ U {S1 = Ty, Sy = Ta})
else
fail
Unification Less Yap
ifC =0 = ||
Attempt to get S = T from C :
c'=c—-{s=T}
If S = T directly:
— unify(C’)
If S is unbounded in T:
— unify(C’/[S — T]) o [S — T]
If T is unbounded in S:
= unify(C/[T — S]) o [T — S]
If S=T follows s1 — sg = t] — to:
= unify(C’ + {s1 = t1,s2 = t2})
IfnoS=7TCC:
Choose S = s — t] and T = t] — tg :
¢’ =c - {51}
= unify(C’ + {s1 = t1, sg
Subtyping
S <: T says ‘S is a subtype of T,
Unlike ‘subsets’ a subtype is ‘more informative’, meaning it
may contain more parameters, but never fewer. So a subtype
can always be used safely in place of the ‘supertype.’
e.g. S={x:Nat,y:Nat}, T = {x: Nat}, so S <: T.
Rules
T-Sub: LEt: s s< T

else
if S

else
else

else

=t2})

‘subtype can be typed as its supertype, too’
S-Refl: S <: S
‘everything is a subtype nf itself”

U _u<:T

S-Trans: S<:Y U

‘subtype relation is transitive’
S-RedWidth: {1; : T/ €1 "Ry < gy,
‘we can add extra ﬁeldfsoincz;g]iczzrd, still a subtype’
S-RcdDepth: w 3161 Ty <ty
‘can also add depth- uwsp (within each ﬁeld s fields)’

.qJ€El..n N .pi€l..n
{k:J.Sj } is perm. of {ll.Ti 3

T_L?El“"}

i<:T
161 n}

S-RcdPerm:

jEL..n i
(kST €My <€y
‘order of fields does not matter (can be a permutation)’
. T1<:Sy] Sg9<:Ty
S-Arrow: m e T Ty
‘a function that takes in less information and outputs more, is a subtype
of a function that takes in more information and outputs less’

Definition: S <: T means that an element of S may be safely 2

used whereever an element of T is expected.

This S-Arrow subtype relation is contravariant in the
left-hand sides of arrows , and covariant in the right-hand
sides of arrows. The intuition is that if we have a function
S1 — Sg, then it will accept any subtype of S as input, and
the result Sy can be viewed as belonging to any supertype of
So.

S-Top: S <: Top, where Top is a new type constant that is a
supertype of every type.

Definition: Liskov’s substitution principle: If X inherits from
Y, then X should pass all of Y’s black box texts. Functions
that use pointers or references to base classes must be able to
use objects of derived classes without knowing it. A function
works on all subclasses of a class.

Rules: (1) Inherited methods of a class must not strengthen
preconditions or weaken postconditions; it must accept a
superset of the values the parent method accepts and output a
subset of the parent’s possible outputs. The parameters must
be contravariant and the return values covariant. (2) Subtypes
must not weaken the class invariants. (3) History rule: the
subtype cannot change in a way prohibited by the supertype,

Q&A
Q1 Practice Answer
CBN
((AzAy.yy) (Aw.ww) Aw.ww))) (Aw.w)
//Ax is called, all x’s replaced
Ay.yy) Aw.w)
//Ay is called, all y’s replaced w/ (Aw.w)
(Aw.w)(Aw.w)
//Aw is caled, all w’s replaced w/ (Aw.w)
(Aw.w)
CBV
Az Ay.yy) (Qw. ww) Aw. ww)) (Aw.w)
Az Ay yy) (Aw. ww) Aw.ww)) (Aw.w)
//infinite loop
Q2 - CBYV rules given CBN rules for pairs and
projections

o1 = ¢} s — e

(e1,e2) = (e, e2) (v1,e2) = (v1,eh)

el~>e/1 e1~>e/1

fst ep — fst ‘3,1 snd e; — snd ‘3/1

fst (vy,vg) — vy snd (vy,vg) — vg
CBYV requires the full evaluation of the expression under
fst/snd before operating on it. This means that the pair
fst/snd is operating over must contain two expressions that
can be fully evaluated.

Q3 - Fix Incoherent Rules

’
e] —> ey

and e] e — and e eg and true eg — eg

and false eg — false
The first rule is for and checks if e; can be evaluated. The old
rules checked if the second term was true or false, meaning
that ey would have to be the term true or false since there is
no rule to evaluate eg to see if it is true or false.

Q8 - Expression evaluates in more steps under
cbv

Az, y.zoy) ((Ae.z)b) (Az.z)b)

under cbn:

Az, y.zzy)((Az.2z)b) ((Ax.x)b)

= (Ay.((Az.2)b)((Az.2)b)y) ((Aw.z)b)

= ((z.z)b)(Az.2)b) ((Az.z)b)

= b((Az.z)b)((Az.2)b)

under cbv:

Az, y.zzy)((Az.z)b) ((Ax.x)b)

= Az, y.zzy)b((Az.x)d)

= (Aa, y.xay)bb

= (Ay.bby)b

= bbb

1t answer

(Az.a)((Ay.y)b)

CBV (2 steps):

(Az.a)((Ay.y)b)

(Az.a)(b) — a

CBN (1 step): (Az.a)((Ay.y)b) = a | (Az.A\y.
very long that can evaluate)

In CbV this will need to evaluate the very long term, but in

CbN it will try to substitute it exactly for x, but = is not
used, so the evaluation does not need to be done.

y)(anything

Q9 - Expression evaluates in more steps under
cbn

alt answer

Justify that your example is correct. (Az.zz)((Az.x)(Ay.y))
CbV: (Az.zz)((Az.z)(Ay.y)) = Az.zz)(Ay.y) —
Ay-y)(Ay.y) = (Ay.y)

CbN: (Az.zz)((Az.z)(Ay.y)) —
((Az.2)(Ay.) ((Az.2)(Ay.v) = Qv.y)((Az.2)(Ay.y)) —
(Az.z)(Ay.y) = (Ay.y) (or) (Ay. yyyyy)(any lambda
expression that can evaluate)

CbV will evaluate the second term once and then substitute
the value of it, but CbN will substitute it exactly into every y.
B/c of this, the evaluation will need to be done 5 times.

Q10 - Expression evaluates in exactly 2 steps
under both but then gets stuck

Note 1: stuck means that a term evaluates to a normal form
(no other possible eval rules can be applied) but not a value
(as defined by bnf usually).
Note 2: This solution can be extended for any number of eval
steps greater than 2. Add as many identity functions in
between the first two terms as you want to increase the
number of eval steps by the same amount.
(Az.z)(Az.z)z)(Az.x)

under cbn:

= ((Az.x)z)(Az.x)
z(Ax.x)

under cbv:

= (Az.z)z(Az.x)
= z(Az.x)

alt answer
When a term is in normal form, but not a value, it is stuck.
Example Expr: and True ((Az.z)a)

CBN: 1:Az.za — 2: a
CBV: 1. and True a — 2.

a

Question 11

Explain why the Q combinator (Az.z «)(Az.z), using CbN,
does not lead to a terminating evaluation.

Under Call-by-Name (CbN), the function Az.zax simply
substitutes the argument (Az.xzz) wherever x appears in the
body of the function without evaluating it. So, the result is
(Az.zx)(Ax.xzx) after one reduction step. As you can see, the
result is the same as the original expression. If you try to
reduce it further, you’ll get the same expression again. This
process will continue indefinitely, leading to a non-terminating
evaluation

Q13 - What’s the point of an eval strategy?

The point of having an evaluation strategy is for you or a
computer to know how to evaluate an expression if multiple
reductions are possible. We need them for building
operational semantics. If there isnt an eval strategy then
evaluating an expression would be nondeterministic.

17 - Convention used with respect to bound
variables

The convention used is alpha-equivalence. It captures the idea
that it’s safe to rename a variable in a program if you also fix
all the references to that variable. That is, when you change
the parameter of a lambda term, you also have to go into the
lambda’s body and change the usages of that variable. Terms
that differ only in the names of bound variables are
interchangeable in all context. You can change the name of a
bound variable in a statement and the statements before and
after the change are the same. e.g. (Az.x) is alpha equivalent
to (Ay.y).

When writing lambda terms for humans, we use a convention
called alpha-conversion to avoid confusion between free and
bound variables. Simply, this is the process of renaming
parameters in functions without changing the meaning of the
function. For example, (Az.z)(Ay.yx). Here, the first imtancc
of x is bound while the second instance is free To avoi
confusion, we rename the bound variable to get ()\z z)(ky yax).
This renaming method does not change the meaning of the
term and makes it easier to read and understand.

In linear algebra, it’s common to use alpha conversion
renaming when working with subsets and quantifiers of certain
sets which contain vairables U V W, where you can modify
and manipulate a set and keep its original contents but when
working with its modified version to show its still different we
rename it in terms of bound variables like (a + b = 0) for all
b and there exists an a, is the same as (x + y = 0) for all x
and there exists an y. In predicate calculus, we usually do
renaming with quantifiers V and 3 since it sometimes may
contain a variable that’s not free. In integrals, when you do
double integrals, you don’t integrate based on the same
variable. As long as the mathematical equation is preserved in
its meaning, so theres no direct change when substituting
values from their bound counter part.

Question 18 (5) - Unification
Unify a - a, (b > ¢) - (d — e), and (d — ¢) — a.
{a—>a=(b-—>c)—>(d—>e),a—>a=(d—>c)—al}|l]

{a=(0B-oc)ha=(d—oe)a=(d—c)a=a}|]
{a=(d—e),a=(d— c)}orla/(b— c)]
{(b—c)=(d—e), (b= c)=(d— c)}oa[]oog

{b=d, c=e, b=d, c =c}log[]ooy
{b=d c=c}loglloo

{e = e}loz[b/d] ooy
{c=e}loglloog 00y

{}logle/e] ooy 00y

o =[c/e]o[b/d]o[a/(b— c)]
Question 18 Full
Answers Vary.

1. unify {a — I, B — b}.
A:[Jo[b— Blola— I]

2. unify {a toa, B — b}
A: [Jo[b — B]o[a — b]
3. Why can’t {a,a — a} reduce?
A: because there is no case for the algorithm to continue.
Cannot ensure a — a holds in regards to a.
4. unify {a — (a = b),(c = d) — (b — b)}.
A: [Jo[b— (¢ = d)]ola— (c = d)]
5. unify {a — a,(b - ¢) - (d - e),(d — ¢) = a}.

A:
alt explanation
i) a —» intT & boolT — b We use reduction rule #2
{a = boolT, intT = b} so [Int/b] o [Bool/a]
i) a — a & boolT — b We use reduction rule #2

= boolT, a = b so [boolT/b] o [boolT/a]

iii) a & (a — a) This is reduction rule #3, where ‘x is a and t
is (a — a). However, this is the case where ‘x appears in t,
because a appears in (a — a). Therefore, it cannot be
reduced. You can also think about how if a = (a — a), then it .
also equals [(a — a) — (a — a)], etc. (infinitely recurses)
iv) unify a — (a — b) and (¢ — d) — (b — b).
a=(c—d) & (a — b) = (b — b) (based on rule 2)
{(¢ = d)/a} & (a = b) = (b = b)) (based on rule 3)
b = (¢ — d) (based on substitution) [(¢ — d)/b] o [(¢ — d)/a]
v) unify a — a and (b - ¢) = (d — ¢e) and (d — ¢) — a.
{(d — ¢)/a} (use reduction rule 3)
((d—=¢c) = (d—c)) & ((b - ¢) — (d — €)) (by normal
substitution rule) ((d — ¢) = (b — ¢)) & ((d = ¢) = (d — e))
(by rule 2) (d = b) & (¢ = e) (by equalities)
[d/b] o [e/e] o [(d — c)/al

Question 19
1

[lo[b—dlo[c —e]lola— (b — c)]

h:(a—a—>b) —>a—b
hfz=faa
c:it(a—=b) = (b—>c)— (a—c)
cfag=\z—g(f=)
d::(a—b) = (a—=>b—>c)— (a—c)
dfg=\z—>gaz(fe)

1 f=
T :a
h
g
1

let g h = h (h x)in g f

a— a

it (a—a) >a—a

:(a—>a) > a—a

alt explanation

i)
ii)
iid)
iv)

(a => a -> b)
(a => b) —>
(a => b) —>
(a —> a)

v) (a -> b)
i) (a -=>a ->b) ->a ->b
(a->a ->b) is type of f

And x is type a
Because we are calling f as output,
ii) (@ ->b) > (b (a —> ¢)

(a->b) is type for £
G take f output as its input, so its type is (b->c)

Since output is lambda function and its output is calling

->

b

we return b

> c) >

< g function, its output is (a->c)
iii) (a -> b) -> (a => b -> c) -> (a -> c)
(a->b) is type for f

G take f output as its input, so its type is (a->b->c)

Since output is lambda function and its output is calling
<« g function, its output is (a->c)

iv) (a -> a) -> (a -> a)

F is type (a->a) since it is same as type for h-function

Since we need input for x, we can write output signature
< as if it was for a lambda function

v) Not possible

We have two inputs/constants and just applied with each
> other,which is impossible

Question Q21

Subtyping of function types illustrates both covariance and
contravariance - explain those terms.

Subtyping: hierarchical relation on types, <: can be read as <
7is less than”

Covariance: The ordering of component types is preserved.
Contravariance: The ordering of component types is reversed.
T) <: Sg So <: To
S1 — Sg <: Ty — Ty

Here S7,Tj is contravariance (swapped sides of <:) and

So, Ty is covariance (ordering of <: is the same)
Covariance: In a covariant relationship, the subtyping
relationship preserves the direction of the original types. If A
is subtype of B, then assume we have additional type C, then
A — C is a subtype of B -+ C Contravariance: In a
contravariant relationship, the subtyping relationship is
reversed in direction. If A is subtype of B, then assume we
have additional type C, then B — C is a subtype of A — C.

Question 23

Why are the semantics of case-of (for sums) in a CbV
language weird? Why is this inevitable? Why are the
semantics fine in CbN? Contrast this with ‘either‘ in Haskell.
n CbV we would expect to evaluate the inside fully before the
outside. However, this is again not the case, as we first
evaluate the case statement, before deciding where to
substitute it. This is inevitable, as for sum types, the valid
evaluation steps changes based on the specific type we are
dealing with.

In CbN we do not evaluate the argument before passing it to
begin with, so it is as one would expect.

This is also exactly how Haskell approaches this, as it uses a
variant of CbN, and thus lazily evaluates in the case of Either.

Question 24

Subtyping of function types involves contravariance.
what that is and give an example.
Let’s say we have a number type, an integer type, and a short
mteger type where short integer is a subtype of integer and
nteger is a subtype of number. Then, if we have a function
lntcgcr -> integer‘, we can use the S-Arrow rule to see that:
1. For the input of the function, we could provide a short
integer. This is intuitively valid because if we need to supply
an integer, a short integer works. 2. The output could be a
number or we could treat it like a number. This is intuitively
valid because if the output is an integer, then anything that
applies to numbers would also apply to the output. So we can
see that ‘short integer -> number‘ is a subset of ‘integer ->
integer‘. In this example, contravariance refers to the
left-hand side of the arrow, i.e., the input, where we could use
a short integer in the place of an integer.
Ty <: Sy S <: Ty

Explain

S1 = Sg <:T7 — Tg
Note the order of Ty and S7 in the first premise. The subtype

relation is contravariant in the left-hand side of the arrows
and covariant in the right-hand side of the arrows.

Question 25

(Bonus) Given an example of the failure of preservation.
Define everything you need to illustrate this.

- undecidable type checking: type checking in lambda calculus
can become undecidable. for example systems that involve
recursive types might lead to undecidable.

- polymorphism: systems with polymorphic types, maintaining
preservation could be challenging and contradictory.

Miscellaneous

Q-combinator: (Az.z x)(Az.xz x)

Simplest function that recurses infinitely without calling itself.
Y-combinator: Af.(Az.f(z z))(Az.f(x x))

This function generalizes recursion to any other function in
lambda calculus.

	Programming languages
	Important languages
	Esoteric languages

	Syntax
	BNF

	Dynamic Semantics
	Substitution
	Evaluation Strategies
	Full Beta-Reduction:
	Normal Order:
	Call by Name
	Call by Value

	Church Encodings
	Booleans
	Numerals
	Pairs
	Either
	Lists
	Trees
	Maybe

	Domain Specific Languages (DSLs)
	Shallow
	Deep
	Tagless

	Static Semantics (Typing)
	Progress
	Preservation
	Context
	Unification
	Unification Algorithm

	Unification Less Yap
	Subtyping
	Rules

	Q&A
	Q1 Practice Answer
	CBN
	CBV

	Q2 - CBV rules given CBN rules for pairs and projections
	Q3 - Fix Incoherent Rules
	Q8 - Expression evaluates in more steps under cbv
	Q9 - Expression evaluates in more steps under cbn
	Q10 - Expression evaluates in exactly 2 steps under both but then gets stuck
	Question 11
	Q13 - What's the point of an eval strategy?
	17 - Convention used with respect to bound variables
	Question 18 (5) - Unification
	Question 18 Full
	Question 19
	Question Q21
	Question 23
	Question 24
	Question 25

	Miscellaneous

