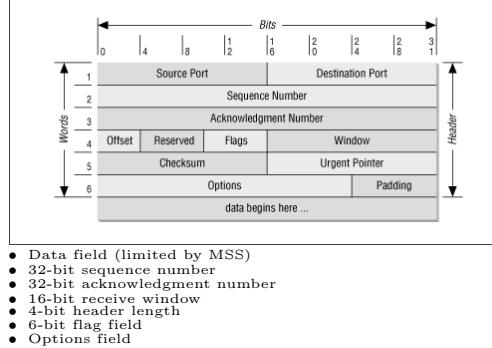
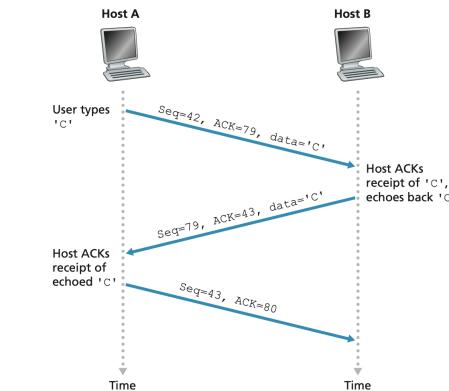


UDP Characteristics

- Connectionless
- No handshaking
- Each segment handled independently
- No congestion control
- Has checksum for error detection


UDP Checksum Calculation

- Covers UDP header + data + pseudo-header
- Sender: Sum all 16-bit words, wrap when overflow, negate the result
- Receiver: Sum all 16-bit words including checksum, result should be all 1's
- Example:**
 - Data: 0x1234, 0x5678, 0xABCD
 - Sum: 0x1234 + 0x5678 = 0x68AC
 - Sum: 0x68AC + 0xABCD = 0x11479 (overflow)
 - Wrap around: 0x1479 + 0x0001 = 0x147A
 - 1's complement: 0xFFFF - 0x147A = 0xEB85
 - Checksum field: 0xEB85
 - Receiver adds: 0x1234 + 0x5678 + 0xABCD + 0xEB85 = 0x1FFE
 - Wrap around: 0x1FFE + 0x0001 = 0xFFFF (all 1's)


TCP Characteristics

- Full-duplex service
- Point-to-point (single sender, single receiver)
- Connection-oriented with handshaking
- Reliable, ordered byte stream
- Flow control
- Congestion control

Segment Structure:

TCP interaction example

3-Way Handshake

- SYN-ACK Process:**
 - **Step 1 (SYN):** Client sends SYN packet with initial sequence number x
 - SYN flag = 1
 - Sequence number = x (random)
 - **Step 2 (SYN-ACK):** Server responds with SYN-ACK packet
 - SYN flag = 1
 - ACK flag = 1
 - Sequence number = y (random)
 - Acknowledgment number = $x+1$
 - **Step 3 (ACK):** Client completes handshake with ACK
 - ACK flag = 1

- Sequence number = $x+1$
- Acknowledgment number = $y+1$

Socket Programming

Socket: Interface between application and transport protocol

UDP Socket Programming:

- No connection required
- Client attaches destination IP/port

TCP Socket Programming:

- Connection required
- Server needs welcome socket
- Creates new socket per client

Socket Programming

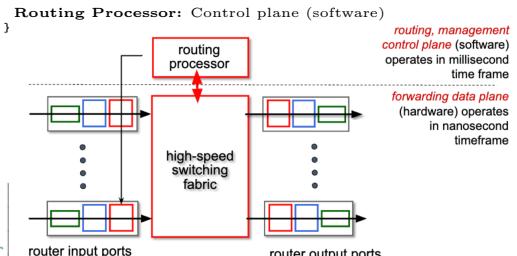
```
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>

#define PORT 8080
#define BACKLOG 5 // Max queued connections

int main() {
    // Create TCP socket (IPv4, Stream)
    int server_fd = socket(AF_INET, SOCK_STREAM, 0);

    // Setup server address struct
    struct sockaddr_in addr = {0};
    addr.sin_family = AF_INET;
    addr.sin_addr.s_addr = INADDR_ANY; // Accept from any IP
    addr.sin_port = htons(PORT); // Host to network byte order

    // Bind socket to IP and port
    bind(server_fd, (struct sockaddr*)&addr, sizeof(addr));


    // Start listening for client connections
    listen(server_fd, BACKLOG);

    // Accept first client (blocking call)
    int client_fd = accept(server_fd, NULL, NULL);

    // Receive data from client
    char buffer[1024] = {0};
    recv(client_fd, buffer, sizeof(buffer), 0);
    printf("Received: %s\n", buffer);

    // Send response to client
    char *msg = "Server Ack";
    send(client_fd, msg, strlen(msg), 0);

    // Close sockets
    close(client_fd);
    close(server_fd);
    return 0;
}
```

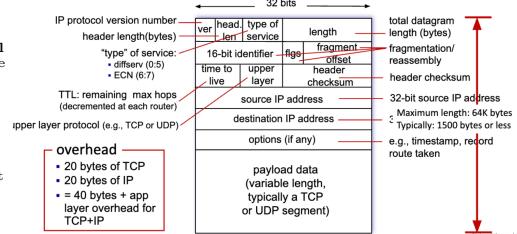

IP Datagram

Wraps around transport layer segments. 1-1 mapping. Characteristics:

- IPv4: 32-bit identifier
- IPv6: 128-bit identifier
- Assigned by ICANN
- Hierarchical: network ID + host ID

Interface: Connection between host/router and link

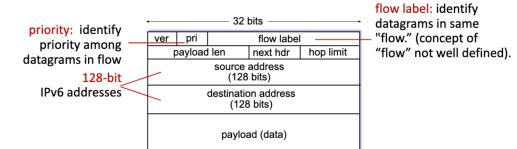
Network ID: IP with host ID all zeros


Prefix: Lowest IP in block + size (bits in network portion)

IP Support Protocols

ARP: Finds MAC for local IP

DHCP: Dynamic IP assignment


IPv4

IPv6

Format: 3fff:0000:0000:0000:0123:4567:89AB:CDEF

Shortened: 3fff:123:4567:89AB:CDEF

What's missing (compared with IPv4):

- no checksum (to speed processing at routers)
- no fragmentation/reassembly
- no options (available as upper-layer, next-header protocol at router)

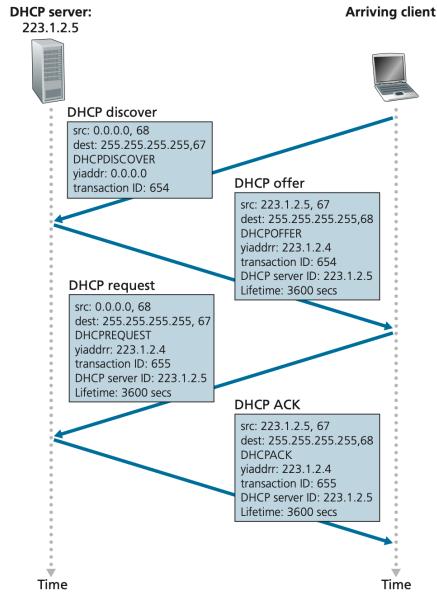
Address Types:

- Unicast: Single interface
- Anycast: Set of interfaces (closest)
- Multicast: Group of interfaces (all)

DHCP (Dynamic Host Configuration Protocol)

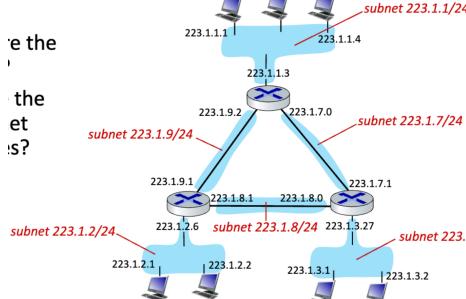
Dynamically get IP address upon joining network. Can renew addresses, reuse addresses, and have mobile support. A **DHCP request** is encapsulated in UDP (transport layer), then IP datagram (network layer), then ethernet (link layer).

Router


Allows multiple devices to communicate with each other on a network. Multiple devices can share one IP address.

Input Ports: Link-layer functions (hardware)

Switching Fabric: Connects ports (hardware)


Output Ports: Transmits packets (hardware)

DHCP Handshake

Subnet

- connection with direct device interface communication. (no intervening router)
- the blue shit in the diagram
- high order bits in ip addresses - common in the same subnet
- low order bits - unique

ARP - address resolution protocol Determines the mac address from the IP address.

ARP Protocol

Translates IP addresses to MAC addresses. Uses ARP table to store this mapping.

Algorithm

- Sender A broadcasts B's ip address to every host
- Hosts compare, B identifies it's theirs and sends its mac address towards A

Link Layer

Functions

- Encapsulates network datagrams in frames
- Error detection/correction
- Link access control
- Reliable delivery (optional)

Implementation: Hardware (NIC) + software

MAC Addresses

Media Access Control address. Used locally to get a frame to travel across a subnet.

- 48-bit (6 bytes, 12 HEX digits)
- IEEE managed
- Typically permanent (can be spoofed)

Ethernet

Topologies:

- Bus: Shared collision domain (old)
- Switched: Star topology with switch (current)

Frame Structure:

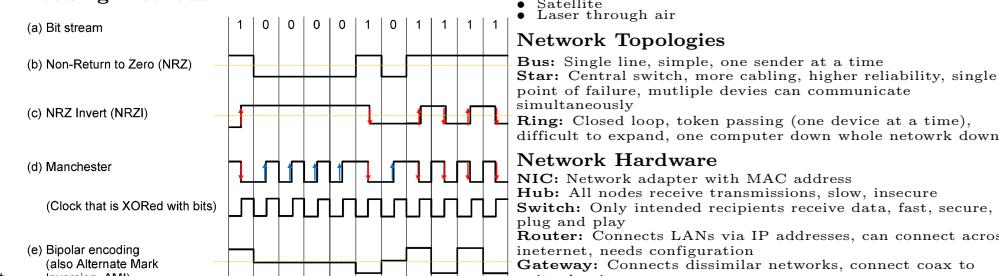
- Addresses: 6B source, 6B destination
- Type field
- CRC error checking
- Preamble (7B synchronization)

Properties: Connectionless, unreliable

Switch

- Stores/forwards frames
- Transparent to hosts
- Self-learning (no configuration)
- Maintains switch table (MAC to interface)

Physical Layer


Signal Modulation

Digital Modulation: Converting bits to signals

Transmission Types:

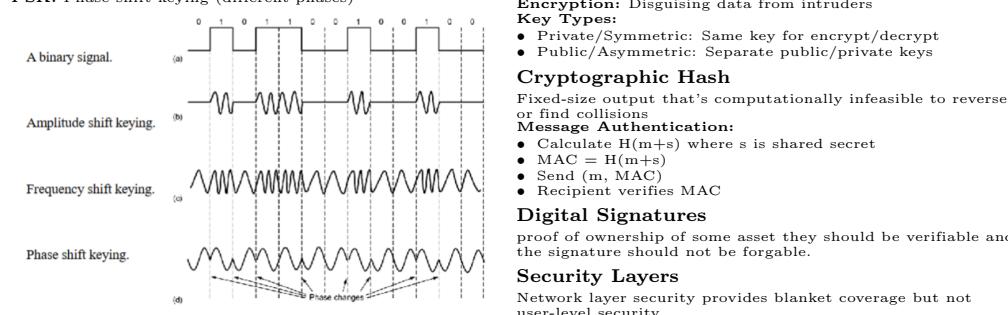
- Baseband: Signal occupies frequencies from zero up to a maximum (wires)
- Passband: Schemes that regular amplitude, phase, or frequency of carrier signal to convey bits. The signal occupies a band of frequencies around the frequency of the carrier signal. (wireless/optical)

Encoding Methods

NRZ: Use a positive voltage to represent 1, negative for 0. Can use more levels of voltages, then the symbol carries more bits. Symbol rate = baud rate.

Manchester: Mixes clock signal with data signal by XORing them together. When the clock is XORed with 0 level, it makes a low-to-high transition (logical 0). When XORed with the 1 level, it is inverted and makes a high-to-low transition (logical 1).

NRZI: Same as NRZ but code one as a transition and zero as no transition (or other way around).


4B/5B: Introduced to limit the number of consecutive 0s or 1s. Every 4 bits mapped to a 5-bit pattern with a fixed translation table. **4B/5B Line Encoding**

Data (4B)	Codeword (5B)	Data (4B)	Codeword (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Passband Modulation

- ASK: Amplitude shift keying (different amplitudes)
- FSK: Frequency shift keying (different frequencies)

- PSK: Phase shift keying (different phases)

Multiplexing

TDM: Time division multiplexing (users take turns)

FTTH: Deployment of fiber optic cables to provide high data rates to customers. One wavelength can be shared among many houses, up to 100Mbps. **FDM:** Different channels transmitted in different frequency bands. **Cable:** Internet over cable reuses the cable television plant. Data sent on a shared cable tree from head-end, not on a dedicated line per subscriber.

Transmission Media

Guided Media:

- Twisted Pair:
 - Cat 5: 100Mbps (2 pairs)
 - Cat 5e: 1Gbps (4 pairs)
 - Cat 6: 10Gbps (up to 100m)
 - Cat 7: Shielded twisted pair
- Coaxial Cable: Better shielding, high bandwidth
- Power Lines: Convenient but noisy
- Fiber Optic: Light pulses, low error, high data rate
 - Single-mode: Narrow, laser, long distance
 - Multi-mode: Wider, LED, shorter distance

Transmission Modes:

- Full Duplex Link: Transmission in both directions at the same time
- Half-Duplex Link: Both direction transmission, but not simultaneously
- Simplex Link: Only one fixed direction at all times, not common

Unguided Media:

- Terrestrial wireless
- Satellite
- Laser through air

Network Topologies

Bus: Single line, simple, one sender at a time

Star: Central switch, more cabling, higher reliability, single point of failure, multiple devices can communicate simultaneously

Ring: Closed loop, token passing (one device at a time), difficult to expand, one computer down whole network down

Network Hardware

NIC: Network adapter with MAC address

Hub: All nodes receive transmissions, slow, insecure

Switch: Only intended recipients receive data, fast, secure, plug and play

Router: Connects LANs via IP addresses, can connect across internet, needs configuration

Gateway: Connects dissimilar networks, connect coax to twisted pair.

Wave Properties

Frequency (f): Oscillations per second (Hz)

Period (T): Time between maxima (sec), $T = 1/f$

Wavelength (λ): Distance between maxima (m)

Relationship: $\lambda = c/f$, $c \approx 3 \times 10^8 \text{ m/s}$

Wireless Networks

Types

Wireless LANs: 100ft range, WiFi (54/300/1000 Mbps)

Wide-area Wireless: Cellular, 10's km, 1-100 Mbps

Characteristics

Advantages: Easy deployment, mobility support, broadcast capability

Challenges: Interference, variable signal strength/data rates

Network Security

Security Properties

Confidentiality: Only sender/receiver understand content

Message Integrity: Content unaltered in transit

Authentication: Verify sender/receiver identity

Operational Security: prevent malicious attacks from public network onto private network through firewall

Security Concepts

Firewall: Controls access between networks

Eavesdropping: Intercepting messages

Encryption: Disguising data from intruders

Key Types:

- Private/Symmetric: Same key for encrypt/decrypt
- Public/Asymmetric: Separate public/private keys

Cryptographic Hash

Fixed-size output that's computationally infeasible to reverse or find collisions

Message Authentication:

- Calculate $H(m+s)$ where s is shared secret

- MAC = $H(m+s)$

- Send (m, MAC)

- Recipient verifies MAC

Digital Signatures

Proof of ownership of some asset they should be verifiable and the signature should not be forgeable.

Security Layers

Network layer security provides blanket coverage but not user-level security

Network Security Fundamentals

Core Terminology

- Resource:** Something valuable to the organization that must be protected.
- Vulnerability:** A weakness that a threat can exploit to gain unauthorized access to a resource.
- Threat:** A potential danger or circumstance that could harm a resource.
- Attack:** The act of exploiting a vulnerability to compromise or steal a resource.
- Risk:** The likelihood that a resource is lost, modified, or removed. (**Risk = Resource + Threat + Vulnerability**).
- Counter-measure:** A safeguard that mitigates a threat or reduces risk.

Threat-Actor Taxonomy

- White-hat:** Ethical testing, permission-based security audits
- Black-hat:** Malicious financial or political gain
- Gray-hat:** Mix of ethical and malicious activity
- Blue-hat:** External penetration tester prior to release
- Script kiddie:** Uses pre-written exploits with minimal skill
- Hacktivist:** Social or political agenda
- Phreaker:** Telephony exploits for free calls or network access
- Carder:** Steals and trades credit-card data

Security Domains

- Physical Security:** Cameras, locks, controlled server-room access
- Logical / Technical Security:** Password policy, antivirus, firewalls, VPN
- Administrative Security:** Training, phishing simulations, data-leak prevention

Threat Landscape

Network Threats

- Malware Types:**
 - Virus - self-replicating; needs user activation
 - Worm - self-replicating; auto-spreads without user action
 - Spyware - covertly monitors users
 - Adware - injects unwanted advertisements
 - Scareware - fake security warnings to provoke action
 - Trojan - legitimate-looking program with hidden payload
 - Ransomware - encrypts data until ransom is paid

Attack Types

- Reconnaissance (Passive):**
 - Ping Sweep - identify live hosts
 - Port Scanning - discover open services
 - Packet Sniffing - capture and inspect traffic
- Access Attacks:**
 - Phishing - deceptive e-mails / sites for credentials
 - Pharming - DNS / hosts-file redirection
 - MITM - intercept traffic
 - Spoofing - falsify source identity
 - Hijacking - take over authenticated session
- Denial-of-Service (DoS):**
 - Saturation Flood - overwhelm with requests
 - Vulnerability Exploitation - crash service via bug
- Distributed DoS (DDoS) Examples:**
 - SYN Flood - half-open TCP handshakes
 - ICMP Flood - excessive echo/response traffic

Security Best Practices

- Segmentation / security zones
- Defense-in-depth (layered controls)
- Least-privilege access
- Adequate protection at every OSI layer
- Information-access restriction
- Separation of duties & job rotation

Security Measures by Goal

- Preventive:** firewalls, locks, policies
- Detective:** logs, IDS/IPS, CCTV
- Corrective:** patching, configuration fixes
- Recovery:** backups, system restore
- Deterrent:** legal notices, sanctions

End-to-End Packet Journeys

DHCP Address Assignment (Bootstrapping)

- Link-up, no IP yet:** When the host joins a wired or WiFi LAN it has no IP address, so it must obtain one via DHCP.
- DHCP DISCOVER broadcast:** The client crafts a DHCP message and encapsulates it as:
 - UDP src=68, dst=67
 - IPv4 src=0.0.0.0, dst=255.255.255.255
 - Ethernet src=client-MAC, dst=FF:FF:FF:FF:FF:FF
 The frame is flooded by any switches until a DHCP server hears it.
- Server processing:** The server demultiplexes the frame, extracts the DHCP request, and allocates network parameters (IP, subnet mask, default gateway, DNS server, lease time).
- DHCP OFFER / ACK unicast:** The server replies (UDP 67 → 68) with the chosen configuration. Now the reply can be unicast because the client's MAC address is known; the IP header still uses the offered yiaddr field, but Ethernet dst=client-MAC.
- Client configuration:** The host installs the assigned IP address and other options; L3/L4 are now ready for normal traffic.

DNS Name Resolution

1. **Need for a destination IP**: To reach `google.com` the host must map the domain to an IPv4/IPv6 address.
2. **DNS query construction**: A DNS query is built and sent to the resolver address learned from DHCP:
 - UDP `src=random_port, dst=53`
 - IP `src=client-IP, dst=DNS-server-IP`
3. **ARP first hop**: If the router's MAC is unknown, the host broadcasts an ARP REQUEST; after the ARP REPLY, the frame can be forwarded to the default gateway.
4. **Resolver/recursive lookup**: The ISP resolver consults its cache or walks the DNS hierarchy (root → TLD → authoritative) and formulates a DNS RESPONSE containing the A/AAAA record(s).
5. **Delivery and caching**: The UDP response traverses the reverse path to the host, which caches the mapping and can now open connections to the server IP.

Fetching a Web Page (HTTP over TCP)

1. **TCP three-way handshake**: The client opens a socket to the web-server IP (default port 80 or 443). SYN → SYN+ACK → ACK completes connection establishment.
2. **HTTP request/response**: The browser sends an HTTP GET / (or HTTPS inside TLS). The server replies with the HTML object (and subsequent resources).
3. **Rendering**: The application layer (browser) parses the HTML, issues additional object requests, and renders the page.
4. **End-to-end path**: Every packet follows the full route: host → access switch → edge router → ISP core → Google edge → Google data-center, and back, traversing the protocol stack at each hop.

Protocol Summary by Layer

Application: DNS (53), HTTP (80), HTTPS (443), SMTP (25), POP3 (110), IMAP (143), FTP (20/21), TELNET (23), SSH (22), DHCP (67/68), RTP, VoIP, SSL/TLS, MPEG-4, H.264, HTML5, CSS

Transport: TCP, UDP

Network: IP, ICMP, ARP, IPX, AppleTalk, OSPF, BGP, RIP, MPLS-VPN, EVPN

Link: Ethernet (802.3), Wi-Fi (802.11), Token Ring (802.5), Bluetooth, Zigbee, Frame Relay, CSMA/CD, Token passing

Physical: ADSL (G.992), Coaxial cable, Twisted pair copper, Fiber optic, Wireless transmission media