
3SH3 Final – Linus Torvalds Edition

Overview
System Programs: associated with the
operating system but are not necessarily
part of the kernel.
Middleware: software frameworks that
provide additional services to application
developers.

Interrupts
Signal to CPU there is a task requiring
attention, usually I/O. Trap is s/w gen-
erated interrupt caused by error or user
request.
Synchronous: user process waits for I/O
to finish, must know time it takes. Asyn-
chronous: request returns before I/O
completion, interrupts when done.
Polling system: system calls all inter-
rupt handlers to determine which made
the interrupt. (slow) vectored system:
handler is found via interrupt vector.
Interrupt is maskable if it can be ignored
by CPU otherwise nonmaskable.

I/O Techniques

Programmed: Requested I/O action per-
formed, module sets I/O status register.
Processor periodically checks status until
action completed.
Interrupt-driven: Process issues I/O
command to module which interrupts pro-
cessor when done. Processor then trans-
fers data.
DMA: Data is transferred directly to
memory, processor only needed for initial-
ization. Bus access slowed for processor
during the transfer.

Processes
Possible states of a process: new, run-
ning, waiting, ready, terminated.

Process Creation Code

int main()
{

pid_t pid;
/* fork a child process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process

↪→ */
execlp("/bin/ls","ls",NULL);

}
else { /* parent process */

/* parent will wait for the child
↪→ to complete */

wait(NULL);
printf("Child Complete");

}
return 0;

}

Fork() returns 0 for the child process, and
returns the pid of the child process for the
parent. The exit(1) system call can be
used to terminate a process with status
1. The parent can obtain the status of a
terminated child with pid = wait(&status)
where status is the integer status of the
child process. A process that has termi-
nated, but whose parent has not yet called
wait(), is a zombie process. If the parent
of a process terminated without invoking
wait(), the process is an orphan.

Posix Shared Memory

/* create the shared memory object */
fd = shm open(name,O_CREAT | O_RDWR,0666)

↪→ ;
/* configure the size of the shared

↪→ memory object */
ftruncate(fd, SIZE);
/* memory map the shared memory object */
ptr = (char *)
mmap(0, SIZE, PROT_READ | PROT_WRITE,

↪→ MAP_SHARED, fd, 0);
/* write to the shared memory object */
sprintf(ptr,"%s",message_0);
ptr += strlen(message_0);
sprintf(ptr,"%s",message_1);
ptr += strlen(message_1);
/* read from the shared memory object */
printf("%s",(char *)ptr);

/* remove the shared memory object */
shm_unlink(name);

Pipes (message passing)

#define BUFFER_SIZE 25
#define READ_END 0
#define WRITE_END 1
int main(void)
{

char write_msg[BUFFER_SIZE] = "
↪→ Greetings";

char read_msg[BUFFER_SIZE];
int fd[2];
/* create the pipe */
if (pipe(fd) == -1) {

fprintf(stderr,"Pipe failed");
return 1;

}
/* fork a child process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
if (pid > 0) { /* parent process */

/* close unused end of pipe */
close(fd[READ_END]);
/* write to pipe */
write(fd[WRITE_END], write msg,

↪→ strlen(write msg)+1);
/* close write end of pipe */
close(fd[WRITE_END]);

}
else { /* child process */

/* close unused end of pipe */
close(fd[WRITE_END]);
/* read from pipe */
read(fd[READ_END], read msg,

↪→ BUFFER SIZE);
printf("read %s",read msg);
/* close read end of pipe */
close(fd[READ_END]);

}
return 0;

}

Threads
Amdahl’s Law
speedup ≤ 1

S+(1−S)/N
where S is the

serial portion of the application and N is
the number of processing cores
Threads of a process share the code sec-
tion, data section, and files of the process.
The registers, stack, and program counter
of the threads differ.
Data Parallelism: distribute subsets of
the same data across multiple computing
cores.
Task Parallelism: distribute tasks
(threads) across multiple computing
cores.
Five areas of challenge in multicore
programming: identifying tasks, balanc-
ing the amount of work tasks do, data
splitting, data dependency, and testing
and debugging.
Synchronous Signals: Delivered to the
same process that caused the signal.
Asynchronous Signals: Delivered to a
process that did not cause the signal.
Thread Local Storage (TLS): Data lo-
cal to a specific thread. Similar to the
concept of static data and local variables.
Lightweight Processes (LWP): Inter-
mediate data structure between user and
kernel threads often used in systems
implementing many-to-many or two-level
thread models. Looks like a virtual pro-
cessor to the user-thread library. The ap-
plication can schedule a user thread to run
on an LWP. Each LWP is attached to a
kernel thread, and it is kernel threads that
the operating system schedules to run on
physical processors. If a kernel thread
blocks, the LWP blocks and also blocks
the user thread down the chain.
Benefits of Threads: Responsiveness,

resource sharing (threads share data by

default), economy (threads are take less

time and memory to create threads then
processes), scalability.

Pthread

pthread_t tid; /* thread identifier */
pthread_attr t attr; /* set of thread

↪→ attributes */
/* set default attributes of thread */
pthread_attr_init(&attr);
/* create the thread */
pthread_create(&tid, &attr, runner, argv

↪→ [1]);
/* cancel the thread */
pthread_cancel(tid);
/* check if there is a cancellation

↪→ request */
pthread_testcancel();
/* wait for the thread to exit */

pthread_join(tid,NULL);
pthread_exit(0);

Synchronization
Critical section problem
A solution to the critical section problem
must satisfy mutual exclusion, progress

(processes are eventually allowed to access
their critical sections after requesting it),
and bounded waiting (there is a limit on
the number of times other processes can
access their critical sections after one pro-
cess has requested access) Peterson’s So-
lution: processes use a flag variable to
indicate if a process is ready to enter its
critical section and a shared turn variable
to indicate which process’ turn it is to en-
ter their critical section.

Semaphores
wait() = P(), signal() = V(), wait() decre-
ments the semaphore, signal() increments
the semaphore.

Atomic Instructions

boolean test_and_set(boolean *target) {
boolean rv = *target;
*target = true;
return rv;

}
do {

while (test_and_set(&lock))
; /* do nothing */
/* critical section */

lock = false;
/* remainder section */

} while (true);
int compare_and_swap(int *value, int

↪→ expected, int new_value) {
int temp = *value;
if (*value == expected)

*value = new_value;
return temp;

}
while (true) {

while (compare_and_swap(&lock, 0, 1)
↪→ != 0)

; /* do nothing */
/* critical section */

lock = 0;
/* remainder section */

}

Liveness: A set of properties that a sys-
tem must satisfy to ensure that processes
make progress during their execution life
cycle.

Pthread Synchronization
Mutex Locks

pthread_mutex_t mutex;
/* create and initialize mutex lock */
pthread_mutex_init(&mutex,NULL);
/* acquire the mutex lock */
pthread_mutex_lock(&mutex);
/* critical section */
/* release the mutex lock */
pthread_mutex_unlock(&mutex);

Condition Variables

pthread_mutex_t mutex;
pthread_cond_t cond_var;

pthread_mutex_init(&mutex,NULL);
pthread_cond_init(&cond_var,NULL);

// thread waiting on condition variable
pthread_mutex_lock(&mutex);
while (a != b)

pthread_cond_wait(&cond_var, &mutex);

pthread_mutex_unlock(&mutex);

// thread that modifies shared data,
↪→ signalling waiting thread

pthread_mutex_lock(&mutex);
a = b;
pthread_cond_signal(&cond_var);
pthread_mutex_unlock(&mutex);

Deadlocks
Is Deadlock Possible
Necessary Conditions

Mutual Exclusion - A resource can only
be held by one process at a time. Hold
and Wait - A process can hold a num-
ber of resources at a time and at the same
time, it can request for other resources
that are being held by some other process.
No preemption - A resource can’t be pre-
empted from the process by another pro-
cess, forcefully. Circular Wait - There
is a circular dependency of resources that
processes are waiting for.

Reader-writer locks

If only reader-writer locks are used in a
multithreaded application, then deadlock
is still possible.
Locks cannot be shared if there is a
writer(mutual exclusion).
A thread can hold one reader-writer lock
while waiting to acquire another(hold and
wait).
You cannot take a lock away, so no pre-
emption is upheld.
A circular wait among all threads is pos-
sible.

Banker’s Algorithm
Need = Max - Allocation.
Safe state = all threads can finish execut-
ing with the available resources.
If need < available for a particular re-
source for all (remaining) threads then not
in safe state.
Otherwise execute the threads that can be
executed until no threads remain.

Resource Allocation Graphs
A directed edge from thread Ti to re-
source type Rj is denoted by Ti → Rj ;

and signifies that thread Ti has requested
an instance of resource type Rj .

A directed edge from resource type Rj to

thread Ti is denoted by Rj → Ti signifies

that an instance of resource type Rj has

been allocated to thread Ti.

Methods for Handling Deadlock
Deadlock Prevention: prevent circular
wait from happening (only practical solu-
tion)
Deadlock Avoidance: don’t grant re-
sources if it leads the system to an unsafe
state.
Deadlock Detection and Recovery: Ei-
ther terminate or preempt resources.

Scheduling
Predicting next CPU burst For-
mula
τn+1 = α·tn+(1−α)·τn where tn is the

value of the nth CPU burst, 0 ≤ α ≤ 1
τ0 affects the starting value of the pre-
dictions, and α affects how much the last
CPU burst vs the last predicted CPU
burst is weighted.
If α = 0, then τn+1 = τn and recent

history has no effect on the future CPU
burst. If α = 1, then τn+1 = tn and

only the most recent CPU bursts matter
(history is assumed to be old and irrele-
vant). α = 1/2 weights recent and past
history evenly.

Scheduling Algorithms Formu-
las
Throughput: Number of processes com-
pleted per time unit Turnaround time
of a process is difference between when
the process finishes execution and its ar-
rival time; turnaround time = process fin-
ish time - start time. Waiting time of
a process is how long a process does
not execute on the CPU from its arrival.
The time a process spends waiting on the
ready queue. CPU utilization rate is
the time the CPU spends executing pro-
cesses divided by the total time (time
spent executing + time spent idle) Re-
sponse Time: The difference between the
time a process produces a response and
the time of the submission of a request
(possibly same as arrival time?)
SJF cannot be implemented at the level of
CPU scheduling because you cannot know
the length of the next CPU burst (you
can’t see the future).
For round robin scheduling, the time
quantum should be large with respect to
the context switch time so not too many
context switches are done, but not too
large so as to devolve to FCFS schedul-
ing.

Chip Multithreading
When you have more than one hardware
thread in a core. The threads look like
two logical CPUs to the OS.
Coarse grained multithreading: a
thread executes on a core until a long-
latency event such as a memory stall oc-
curs. Because of the delay caused by
the long-latency event, the core must

switch to another thread to begin execu-
tion. However, the cost of switching be-
tween threads is high, since the instruc-
tion pipeline must be flushed before the
other thread can begin execution on the
processor core.
Fine grained multithreading: threads
switch at the boundary of an instruction
cycle. Fine-grained systems include logic
for thread switching, so the cost of switch-
ing between threads is small.

Load Balancing
Push migration: a specific task period-
ically checks the load on each processor
and if it finds an an overloaded proces-
sor it evenly distributes the load by push-
ing/moving threads to idle or less-busy
processors.
Pull migration: when an idle processor
pulls a waiting task from a busy processor.

Processor Affinity
A process has an “affinity” for the proces-
sor it is currently running on because the
process will usually have values it uses of-
ten in the cache of the current processor.
Soft Affinity: OS will attempt to keep
a process on a single processor, but it is
possible for a process to migrate between
processors during load balancing. Hard
Affinity: OS allows a process to specify
a subset of processors on which it can run
using sys calls.

Real time Scheduling
The scheduler for a real-time operating
system must support a priority based al-
gorithm with preemption
Event latency: amount of time that
elapses from when an event occurs to
when it is serviced.
Interrupt latency refers to the period of
time from the arrival of an interrupt at
the CPU to the start of the routine that
services the interrupt.
Dispatch latency amount of time re-
quired for the scheduling dispatcher to
stop one process and start another.
Little’s Formula: n = λ · W where n is
the average long-term queue length (ex-
cluding the process being serviced), λ is
the average arrival rate for new processes
in the queue, and W is average long-term
queue length.

Gantt Chart

Memory Management
Dynamic loading: a routine is not
loaded until it is called. All routines are
kept on disk in a relocatable load format.
The main program is loaded into memory
and is executed. When a routine needs to
call another routine, the relocatable link-
ing loader is called to load the desired rou-
tine into memory if its not loaded and to
update the program’s address tables to re-
flect this change. Then control is passed
to the newly loaded routine.
Dynamic Linked Libraries are similar.

Fragmentation
First fit strategy given N blocks will lose
0.5N blocks to fragmentation; 1/3 of mem-
ory will be unusable. Is also called the
50% rule.
Compaction is only possible if relocation
is dynamic and done at runtime, not pos-
sible if relocation is static and done at as-
sembly or load time.

Paging
If the size of the logical address space is
2m, and a page size is 2n bytes, then the
high-order m-n bits of a logical address
designate the page number, and the n
low-order bits designate the page offset.
If process size is independent of page
size, we expect internal fragmentation to
average one-half page per process.
The frame table has one entry for each
physical page frame, indicating whether

the latter is free or allocated and, if it is
allocated, to which page of which process
(or processes). Used by the OS to keep
track of physical memory.
Reentrant code is non-self-modifying
code: it never changes during execution
and can be shared among processes. Can
be implemted as shared pages.

Number of Bits and/or Entries

Important: if any size is not in bytes con-
vert to bytes first.
If the address takes x bits to store, page
size is 2y bytes, and number of frames or
pages is 2z , then x = y + z.
Conventional single level page table
stores an entry for each virtual page or
page number. Inverted page table stores
an entry for each physical frame.

Internal Fragmentation Formula

Given page size = p, process size r, pages
used = n, fragmentation = n · p − r

Virtual Memory

Demand Paging

effective access time = (1−p) ·ma+p ·
page fault time where p is the probability
of a page fault and ma is the memory
access time.
A valid/invalid bit is used to tell a
process if a page is legal and in memory
or if its invalid (not in address space of
the process) or legal but not in memory.
OS’ maintain a free frames list which
is a pool of free frames for satisfying
requests for new pages being brought into
memory.
Zero-fill-on-demand: the contents of
frames are erased before being allocated.

File System
Volume: disk block that contains file
system.

Info associated with an open file: file
pointer, file-open count, location of the
file, and access rights to the file.

Operations to be performed on a di-
rectory: search for a file, create a file,
delete a file, list a directory, rename a file,
traverse the file system.

Directory Structure

Single-level directory: Only one direc-
tory exists for all users and all files are
kept in it.
Two-level directory: Each user has their
own directory and a master file directory
is indexed by username to point to the
user’s directory. Isolates users from each
other. Is a tree of height 2.
Garbage collection involves traversing
the entire file system, marking everything
that can be accessed. Then, a second pass
collects everything that is not marked
onto a list of free space. Only used in gen-
eral graph directory structures.

Logic for “answering maximum size of
file” type questions: multiply the num-
ber of direct disk blocks by size of the
disk blocks, for indirect disk blocks, di-
vide the size of the disk blocks by the size
of a pointer to a disk block, then raise this
number by a power which is the same as
the level of the indirect block (i.e. for sin-
gle indirect raise by a power of 1, for a
double indirect raise by a power of 2, and
so on). Multiply this value by the size of
a disk block and by the amount of that
specific indirect disk block, i.e. if you are
doing the calculation for 5 single indirect
disk blocks, then multiply by 5 at the end.
Add the multiplications for all the types
of disk blocks together for the final an-
swer.

Mass Storage Systems

SCAN Scheduling

The disk arm starts at one end of the disk
and moves toward the other end, servicing
requests as it reaches each cylinder, until
it gets to the other end of the disk. At the
other end, the direction of head movement
is reversed, and servicing continues



C-SCAN Scheduling
C-SCAN moves the head from one end of
the disk to the other, servicing requests
along the way. When the head reaches
the other end, however, it immediately re-
turns to the beginning of the disk without
servicing any requests on the return trip.
Is a variant of SCAN scheduling.
Write amplification: The creation of
I/O requests not by applications but by
the NVM device doing garbage collection
and space management. Can greatly im-
pact the write performance of the device.

latency & I/O time
Latency based on spindle speed: 1/
(RPM/60) = 60/RPM
Average latency = 1/2 latency
Access Latency = average seek time + av-
erage latency
Average I/O time = access latency +
(amount to transfer / transfer rate) +
controller overhead

Conversions
1 s = 1000ms, 1ms = 1000 µs (microsec-
ond), 1 µs = 1000 ns

1 kB = 210 B = 1024 B,

1MB = 220 B = 1,048,576 B,

1GB = 230 B = 1,073,741,824 B,

1TB = 240 B = 1,099,511,627,776 B


	Overview
	Interrupts
	I/O Techniques

	Processes
	Process Creation Code
	Posix Shared Memory
	Pipes (message passing)

	Threads
	Amdahl's Law
	Pthread

	Synchronization
	Critical section problem
	Semaphores
	Atomic Instructions
	Pthread Synchronization
	Mutex Locks
	Condition Variables


	Deadlocks
	Is Deadlock Possible
	Necessary Conditions
	Reader-writer locks

	Banker's Algorithm
	Resource Allocation Graphs
	Methods for Handling Deadlock

	Scheduling
	Predicting next CPU burst Formula
	Scheduling Algorithms Formulas
	Chip Multithreading
	Load Balancing
	Processor Affinity
	Real time Scheduling
	Gantt Chart

	Memory Management
	Fragmentation
	Paging
	Number of Bits and/or Entries
	Internal Fragmentation Formula


	Virtual Memory
	Demand Paging

	File System
	Directory Structure

	Mass Storage Systems
	SCAN Scheduling
	C-SCAN Scheduling
	latency & I/O time

	Conversions

