
CS 4NL3 Final: Never Learning Edition

Static Word Embeddings
Distributional Semantics the idea that a
word’s meaning is given by the words that
frequently appear nearby.

Word2Vec

Train a 2 layer neural network on one of the
following tasks Given a middle word and contexts
from [w(t − 2), w(t + 2)]...

Continuous Bag of
Words (CBOW)

Skip Gram

Sum the words in the
context window (”cu-
mulative bag of words”)
and predict the missing
word in the middle

You have the middle
word and you use it
to predict the context,
individually, one at a
time.

This smooths over con-
text words. Worse
representation for rare
words. Better repre-
sentations on small cor-
pora.

More seen in practice,
better for large corpora
(million iterations).
Can be sped up with
negative sampling
where you predict ”are
they in the context
window or not” (binary
classification) as op-
posed to predicting the
word directly.

Once this model is trained you will have two (one
from each layer) weight matrices (an encoder
V ×D and decoder D × V). The encoder
becomes our embedding matrix.

Issues

• Black Sheep Problem (Maxim of Quantity:
contribute as much information as required,
but no more Paul Grice)

• Type of Similarity (sound, type-of) “flatted”
• Lack of Context - River vs Financial bank
• Human Biases
• Hard to Interpret

PPMI Matrix

Instead of weighing words based on which
documents they appear in we can weigh them
based on which words they co-occur with.
Assuming w, c ∈ V

PMI(w, c) = log2

(
P (w, c)

P (w)P (c)

)

If two events a and b are totally unrelated, then
P (a, b) = P (a)P (b)

You can represent a word as a vector of their
PPMI values with all other words in the vocab!

PPMI(w, c) = max

(
log2

(
P (w, c)

P (w)P (c)

)
, 0

)

Latent Semantic Indexing (LSI)

Factor a x = term × term matrix into T0S0D0
using Singular Value Decomposition (SVD),
where S0 tells you how important a concept is,
sort it by decreasing value. So set all low values
to 0 to get an approximate x̂.
Before After

Global Vectors (GloVe)

1. Build the co-occurrence matrix
2. Initialize: Target word vectors wi ∈ RD ,

Context word vectors ŵj ∈ RD , Bias terms

bi, b̂j ∈ R
3. Optimize loss function:∑V

i,j=1 f(Xij)
(
w⊤i ŵj + bi + b̂j − log Xij

)2
where f(Xij) reduces the influence of very

frequent or rare word pairs
4. Final embeddings i = wi + ŵi

GloVe vectors use global (whole corpus)
co-occurance statistics. This makes them more
stable than Word2Vec.

Recurrent Neural Networks (RNN)

Forward pass

h0 ← 0
for i ← 1 to length(x) do
hi ← g(Uhi−1 + Wxi)

yi ← f(V hi)
return y

Backpropagation you unroll the network

Objective Function Negative log likelihood
LCE = −

∑
w∈V yt[w] log ŷt[w]

With Embedding Layer

Before the forward pass, embed et = Ext

Weight Tying

Before After

xt ∈ |V | × 1
ht ∈ d2 × 1
yt ∈ |V | × 1
E ∈ |V | × d1
W ∈ d1 × d2
U ∈ d2 × d2
V ∈ d2 × |V |

xt ∈ |V | × 1
ht ∈ d × 1
yt ∈ |V | × 1
E ∈ |V | × d
W ∈ d × d
U ∈ d × d
V ∈ d × |V |
E = V⊤

Options for Initialization

Yes No
Weight Tying Input and out-

puts matrices
are the same

Input and out-
put are sepa-
rate layers

Pretraining Embeddings
are initialized
randomly

Embeddings
initialized from
pretraining

Weight Freez-
ing

Embeddings
update while
training

Input embed-
dings frozen

Low compute? Initialize pretrained embeddings.

Worried about rare words? Untie weights, freeze
input.

RNN for Sequence Labeling

Before NNs, there was (Generative) Hidden
Markov Model and (Discriminative) Conditional
Random Field. Now, you can take either the last
time step of an RNN (assuming all time steps are
”remembered”), or weight all the hidden states
equally and plug it into an NN classifier.

RNN Stacking

Different layers learn
different levels of
”abstraction”

Bidirectional RNN

One model reads
forward, the other
backwards, then
concatenate the two
hidden states.

Long Short-Term Memory Network (LSTM)

Gates (2 columns)

Forget Gate Decide
what old information to
erase from memory.

ft = σ(Ufht−1+Wfxt)

kt = ct−1 · ft

Mask Content Figure
out what new
information might be
useful.
gt =
tanh(Ught−1 + Wgxt)

Add Gate Decide how
much of that new
information to actually
keep.

it = σ(Uiht−1 + Wixt)

jt = gt · it

New Context Vector
Combine the
remembered past with
the newly approved
content.

ct = jt + kt

Output Gate Decide
what part of the
memory we show to the
world.

ot = σ(Uoht−1+Woxt)

ht = ot · tanh(ct)
Gated Recurrent Unit (GRU)

1. Interpolation Factor ztThis is like our
”slider” between old and new information.

2. Gate rt It is like a forget and add vector in
one! (Linear Interpolation)

3. Combine ”New” and ”Previous” Hidden
States ht We use zt to take from both
accordingly

Encoder-Decoder RNN

1. Encoder takes input sequence and generates a

sequence of states h⊕n = c = hd
0

2. Compute a context representation c
3. Decoder takes context and generates output

sequence hd
t = g(ŷt−1, hd

t−1, c)

If we use an Encoder-Decoder RNN, the last
hidden state is biased towards information at the
end of the sentence which may not contain
Information from earlier in the sequence.

Some ideas:

• use c at each step in decoding
• average all encountered hidden states to

compute c
• weigh them appropriately with attention

Encoder-Decoder RNN with Attention

We compute

score(h
d
i−1, h

e
j) = h

d
i−1 · h

e
j

(represents how similar these two states are)

Then you use soft-max to normalize that into a
probability distribution

αij = softmax(score(h
d
i−1, h

e
j))

This givens you a distribution of those hidden
states and how much they are relevant to the
current state.

Now we can take a weighted sum of the encoder
states at each decoder timestep, this contains the
information that is relevant for that step of
decoding and changes at each timestep.

Contextualized Word Vectors
Contextualized Word Vector (CoVe)

Train an Encoder-Decoder LSTM to translate
sentences (use GloVe to initialize embedding
layer).
The hidden states of this encoder are the CoVe
vectors (contextualized embeddings)

CoVe(w) = MT-LSTM(GloVe(w))

These are then concatenated with the GloVe
vectors and passed to your downstream model.

Embeddings from Language Models (ELMo)

1. raw static word embeddings at the first layer
2. 2-layer BiLSTM, trained to predict the next

word (language modeling), the lower layer will
capture syntax, the upper layer will capture
semantics

3. learned weights to combine them into your
final embedding

This one can distinguish between ”play” in sports
vs acting. Better performance than CoVe.

Muli-task Modeling
Train multiple tasks at the same time. The
network may learn useful information for both
tasks e.g. Name-Entity Recognition (NER) +
Part-of-Speech (POS) Tagging. Earlier layers
share parameters, learning representations useful
for both tasks.

Self-Attention (Transformers)
How similar each word is to all of the words (or
previous words) in a sentence, including itself.

• Query current
element (being
compared to
preceding inputs)

• Key preceding input
to be compared to
current element
(other vectors,
including itself)

• Value value of
preceding element to
get weighted and
summed

• xt ×WQ, xt ×Wk,

xt ×Wv to get
queries, keys, values,
respectively

• QK⊤ similarity
between the queries
and keys by taking
their dot product

• 1√
dk

for numerical stability

• softmax amongst all the keys → element i of
this output vector will represent what
percentage of this query will be represented by
key i

• ×V sums ith element from our SoftMax output
with Value i for all i words in our sentence.

Similar idea to what we did before with our CoVe
except before our K and V were the same (Q was
the decoder state and K was the encoder state).

Masked Attention
often, we don’t want to
earlier words to attend
to the later words

Note we can compute the Attention for each word
in parallel. This is super efficient and awesome.
Transformers handle long-range dependencies
effectively — they can capture the context of a
word at the end of a sentence even if the relevant
information appears at the beginning. This is
something RNNs often struggle with.
Note we do not necessarily have to use Dot
Product, we can use any cosign similarity or a
normalized dot product i.e.

= Dot Product
of Embedding Values

Multihead Attention

We can create multiple heads that learn different
functions of what linguistic (or other) features to
attend to.

Tokenization
Byte-Pair Encoding (BPE)

Start with single characters in the vocabulary,
take the most frequent pair of tokens and
concatenate them. Merge greedily in order. This
means that token frequencies in test set (after
tokenizer is learned) do not affect how the text
will be tokenized.
Add symbol to denote the end of a word
We end up with tokens for frequent words and
subwords (morphemes).

Word Piece

Initial vocab is each unit in the vocabulary.
Compute pair score score =

freq of pair
freq of first element×freq of second element

this

looks similar to PMI! Merge until we have a new
vocabulary
We denote each section with two hashtags in
front ##

Sampling
Top-k

• Assign probabilities to all words in a
vocabulary, model the softmax output

• Sort words by probability and take only the
top k words

• Renormalize and sample the next word from
these top k

Here, we are limiting the distribution by a fixed
number of words.

Top-p

• Assign probabilities to all words in a
vocabulary, model the softmax output

• Sort words by probability and take only the
top p probability mass

• Renormalize and sample the next word from
these top p

Temperature Sampling

Reshape the distribution instead of truncating

y = softmax

(u

τ

)
With temperature sampling τ ≤ 1, probability of
probable words increase and probability of rare
words decrease.
So larger τ, more diversity, and as τ → 0, less
diversity (we approach Top-1 sampling).

Fine-tuning
Bottleneck Adapter

add new layers between transformer layers by
”projecting” (linear layer) the hidden states down
and then back up (plus a residual connection, r)

h ← Wup · f(Wdown · h) + r

We freeze all other parameters in the model and
only update the new layers (FF Up and FF Down)

Low-Rank Adaptation (LoRa)

learns low-rank matrices in place of the
transformer layer weights for keys, values,

queries, and output (WQ,WK,WV ,WO)

Freeze all original parameters and only update
the low-rank adaptations

E.g., you can factor W ∈ Nxd matrix into
A ∈ Nxr and B ∈ rxd Then in the forward pass
we compute h = xW + xAB

You can use a scaling parameter a to weight the
impact of new parameters. For faster inference,
merge AB + W → W ′ (after training).

Evaluation of Language Models
Intrinsic

Projection

Visualize word vectors in 2D to see if similar
words are near each other.

Perplexity

The inverse probability assigned to test set
normalized by length. Lower Perplexity is better,
best Perplexity is 1.

So for example, if Model A has less words in its
Vocabulary as opposed to Model B, with no other
information, Model A is more likely to have a
lower perplexity! Model A has fewer
options even if you were randomly guessing the
next word, it is more likely you will get the
answer right with model A.

It’s the inverse of the Probability that the model
assigns to the held-out data (lower is better).
Instead of simply saying ”it’s not in the right
bin” (like Accuracy), we say, what is the
probability that it will be in the right bin.

Perplexity(W)

= P (w1w2 . . . wN)
− 1

N = N

√√√√ 1

P (w1w2 . . . wN)

For an N-gram Language Model

= e

(
− 1

N

∑N
i=1 log(P (wi|w1...wi−1))

)
Extrinsic Evaluation

See how well the embedding performs for other
downstream tasks.

Blue Score

How much overlap between generated model and
a doc from training data, using different N-grams.

Few-Shot Learning
Original Definition

You create a feature representation of each class,
and then you want to find which class the
instance is closest to.

Prompting Definition

You prompt the model to perform classification.

One-Shot: One example Zero-Shot: No
examples, only task description

Large Language Models
GPT-1 (2018)

Uni-directional.

1. Pretrain 12x Decoder-Only transformers for
language modelling

2. Fine-tunefor Classification (Sentiment,
Grammaticality), Question answering,
Sentence similarity, Natural langage inference

3. They also had an auxillary objective function
but it barely made a difference

Bidirectional Encoder Representations from
Transformers BERT (2018)

Pretraining

Used

• Masked Language Modeling: Instead of
predicting wn given w1, . . . , wn−1 (i.e. from

left to right one by one), remove n random
tokens and predict those instead. say, 50% of
tokens.

• Next Sentence Prediction The task is to
predict whether or not the given sentence
follows the previous sentence.

• CLS Token Before, people were using ”start
tokens” for the beginning of a sequence.
Alternatively [CLS] tokens (which stands for
”classification”) is the only token that will be
used for classification tasks/objectives. By
doing that, it encourages the model to encode
the *entire meaning of the sentence* (in a way)
in this [CLS] token because it is all that is
being used to perform the classification.

Properties

• uses word piece tokenization
• encode-only
• 12 transformer layers stacked

Fine-Tuned

• Sentence Pair Classification Tasks
• Single Sentence Classification Tasks
• Question Answering Tasks
• Sentence Tagging Tasks

GPT-2 (2018)

Higher quality training data. 40GB of test.

RoBERTa (2019)

BERT improved

• Dynamic masks: different masks for each
sentence

• No next-sentence prediction, turns out you can
get a lot more out of increasing the context
size and doing more masked prediction

• expanded masked language model context size
• larger mini-batches
• bye-pair tokenization
• more data
• longer training

GPT-3 (2020)

More data. 570GB of test.

Strong improvement on the LAMBADA (common
sense) dataset.

Sentence-BERT (SBERT) (2018)

Used to create sentence embeddings.

[CLS] token embeddings or averaged hidden
states perform poorly, so... use BERT base model
to create high-quality sentence embeddings. How?

• Pool encoding for each sentence
• Concatenate vectors with element-wise

difference
• Linear for classification (entailed, contradict,

or neutral)

Often competitive with LLM encodings of
sentences and generally much quicker.

Llama Models (2023-2025)

Models are very similar to other transformer
LLMs (esp. GPT-3)

• Train on publicly available data (Llama 1) and
scraped data (Llama 2 & 3)

• From 7B to 70B model sizes, context length 4K
• Llama 3 uses Direct Preference Optimization

to learn rank w/o Reward Model

Properties of MLM Pretraining
• Contextual word representations
• improved generalization
• seeing wide range texts, fill in missing words
• fine tunable
• Robustness to missing data

Extra Last Minute Topics
Stochastic Parrot

LLMs cannot understand language, they are just
convincing (bullshit)

Octopus

Models cannot learn meaning (not grounded in
reality)

BBQ

The idea is that if enough Information is not
provided, the model should say the data is
Unknown, it is biased if it chooses a group.

Reinforcement Learning (RL)

The concept that you have some context (state)
and need to choose a class (action), but you don’t
know if the output is good right away. We need
to trace it back to determine which actions were
helpful. A reward signal comes from actions
taken by an agent and is used to update a policy
that guides the agent’s actions.

Reinforcement with Human Feedback
(RLHF)

Instruction Tuning

Fine-tuning on data that contains instructions
and answers.
How to get data:
1. Have people write examples
2. find examples from existing data e.g. QA,

summarization
3. use the instructions given to the annotators
4. generate examples with LLMs and manually

check instances before adding to the training
data

(FLAN and T5)

Mixture of Experts (MoE)

1. different ”expert” models can be created for
different tasks/domain

2. let an NN decide which expert to use
3. you can set unused experts activations to 0

(more efficient)

Calcs
Sigmoid

σ(x) =
1

1 + e−x

Theoretical Temperature controlled sigmoid

σ(x, T) =
1

1 + e−x/T

Log Rules

ln(ax) = x ln(a); ln(ab) = ln(a) + ln(b);
ln(a

b
) = ln(a) − ln(b)

Element wise multiplication

a ⊙ b = [1, 2] ⊙ [4, 3] = [4, 6]

Cross Entropy Loss

Given the true token t, and predicted probability
for token x = px

LCE = − log(pt)

Softmax

Given a vector X, we want to create a probability
distribution of the elements in the vector.

softmax(X) =
exi∑|X|

j
e
xj

Softmax with Temperature

softmaxτ (X) =
e(xi/τ)

∑|X|
j

e
(xj/τ)

The vector components should be logits, so X
should not already be a probability distribution.
Make sure you log The vector before you apply
softmax.

Matrix Multipication

A =
[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]

C = AB =
[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

Matrix Transpose

A =

[
a b
c d
e f

]
A⊤ =

[
a c e
b d f

]
Gradient Descent Rule

f = wx + b, L = f
2

∂L

∂w
=

∂L

∂f
·

∂f

∂w
= 2f · x = 2(wx + b) · x

∂L

∂b
=

∂L

∂f
·

∂f

∂b
= 2f · 1 = 2(wx + b)

Review Questions
PPMI

You will be given a term-doc matrix. Your job is
to calculate the term-term matrix via a self
dot-product – resulting in the following. Then
sum each column/row, and the sum of that row -
as seen below.

PPMI(like, person) = log2

(
P (like, person)

P (like)P (person)

)

= log2

(
24/243

(72/243)(81/243)

)
= log2(2) = 1

RNN Passthrough

Given the outlined in Recursive Neural
Network, find ft, kt, ct, it, jt, gt, ot, ht.

Answer: to Solve, just perform matrix
multiplication (dot product) or pairwise
multiplication where necessary.

Self-Attention Passthrough

Q = xtWQ =
[

3 3
−2 −2

]
K = xtWK =

[−1 −1
−1 0

]
V = xtWV =

[
2 −5
−1 1

]
Question gives us dK , the number of columns in
K = 2.

QK
T

=
[−6 −3

4 2

]
A = d

−1
K

QK
T

=
[−3 −1.5

2 1

]
(1)

Typically we solve for (d
−1/2
K

)QKT , but here

the question asks for d
−1
K

(QKT). Note K = KT

here. Shortform this to A.

softmax(A) =

[
softmax([−3 −1.5])
softmax([2 1])

]
To solve softmax of a matrix, you have to solve it
row by row or column by column. Since we did

QKt, we do row by row.

softmax(A)V =


e−3

e−3+e−1.5
e−1.5

e−3+e−1.5

e2

e2+e
e

e2+e

 [2 −5
−1 1

]

WordPiece Tokenization

Given the following corpus, compute the first 2
merges using WordPiece:
raw, how, how, wow, wow, who

Merge Step 1:

Reconstruct the corpus using token pairs, then

calculate scores via S(h, t) =
C(h,t)

C(h)C(t)
. Merge

highest score greedily. Hack: Keep track of what
was updated – rows with non-updated tokens
don’t need to be touched.

C: r=1, h=2, w=3, #a=1, #o=5, #h=1, #w=5

r #a: 1 -- S() = 1/(1*1) = 1 <<<
#a #w: 1 -- s() = 1/(1*5) = 1/5
h #o: 2 -- S() = 2/(2*5) = 1/5
#o #w: 4 -- S() = 4/(5*5) = 4/25
w #o: 2 -- S() = 2/(3*5) = 2/15
w #h: 1 -- S() = 1/(3*1) = 1/3

Merge Step 2:

When we reconstruct the token pairings, use the
longest substring match. Thus, we use ra instead
of r.

C: h=2, w=3, #o=5, #h=1, #w=5, >updated> ra=1, r=0, #a=0
ra #w: 1 -- S() = 1/(1*5) = 1/5
h #o: 2 -- S() = 2/(2*5) = 1/5
#o #w: 4 -- S() = 4/(5*5) = 4/25
w #o: 2 -- S() = 2/(3*5) = 2/15
w #h: 1 -- S() = 1/(3*1) = 1/3 <<

Tokenization Result

1x(ra #w), 2x(h #o #w), 2x(w #o #w), 1x(wh #o)

BPE Tokenization

Given the same corpus as above, compute the
first 2 merges using BPE

Merge Step 1

Find the counts of all present token pairs

C: r, a, w, h, o, _

r a -- 1
a w -- 1
w _ -- 5 <<
h o -- 3
o w -- 4
w o -- 2
w h -- 1
o _ -- 1

Merge w_.

Merge Step 2

C: r a w h o _ w_

r a -- 1
a w_ -- 1
h o -- 3
o w_ -- 4 <<
w o -- 2
w h -- 1
o _ -- 1

Merge o w_.
Final Vocab:

Vocab: r a w h o _ w_ ow_

1x r a w_
2x h ow_
2x w ow_
1x w h o _

	Static Word Embeddings
	Word2Vec
	Issues
	PPMI Matrix
	Latent Semantic Indexing (LSI)
	Global Vectors (GloVe)

	Recurrent Neural Networks (RNN)
	With Embedding Layer
	Weight Tying
	Options for Initialization
	RNN for Sequence Labeling
	RNN Stacking
	Bidirectional RNN
	Long Short-Term Memory Network (LSTM)
	Gates (2 columns)

	Gated Recurrent Unit (GRU)
	Encoder-Decoder RNN
	Encoder-Decoder RNN with Attention

	Contextualized Word Vectors
	Contextualized Word Vector (CoVe)
	Embeddings from Language Models (ELMo)

	Muli-task Modeling
	Self-Attention (Transformers)
	Multihead Attention

	Tokenization
	Byte-Pair Encoding (BPE)
	Word Piece

	Sampling
	Top-k
	Top-p
	Temperature Sampling

	Fine-tuning
	Bottleneck Adapter
	Low-Rank Adaptation (LoRa)

	Evaluation of Language Models
	Intrinsic
	Projection
	Perplexity
	For an N-gram Language Model

	Extrinsic Evaluation
	Blue Score

	Few-Shot Learning
	Original Definition
	Prompting Definition

	Large Language Models
	GPT-1 (2018)
	Bidirectional Encoder Representations from Transformers BERT (2018)
	Pretraining
	Properties
	Fine-Tuned

	GPT-2 (2018)
	RoBERTa (2019)
	GPT-3 (2020)
	Sentence-BERT (SBERT) (2018)
	Llama Models (2023-2025)

	Properties of MLM Pretraining
	Extra Last Minute Topics
	Stochastic Parrot
	Octopus
	BBQ
	Reinforcement Learning (RL)
	Reinforcement with Human Feedback (RLHF)
	Instruction Tuning
	Mixture of Experts (MoE)

	Calcs
	Sigmoid
	Log Rules
	Element wise multiplication
	Cross Entropy Loss
	Softmax
	Softmax with Temperature

	Matrix Multipication
	Matrix Transpose
	Gradient Descent Rule

	Review Questions
	PPMI
	RNN Passthrough

	Self-Attention Passthrough
	WordPiece Tokenization
	Merge Step 1:
	Merge Step 2:
	Tokenization Result

	BPE Tokenization
	Merge Step 1
	Merge Step 2

