Regular Expressions

Pattern Matches

\s whitespace

\d any digit

{N} exactly N of the previous item

\w any "word” characters (includes
numbers)

\S, \D, \W anything NOT in the lowercase
version of that pattern

\b word boundary

B start of the string

S end of the string

A|B A or B

[a — 2], [abede],[0 — 9] any character in the brackets of

specified range of characters

any character

7 0 or 1 of the preceding character
* 0 or more of the preceding char-
acter
+ 1 or more of the preceding char-
acter

x7 not greedy

Example of Not Greedy

text = "<tag>I have something here</tag> <tag>but other
< stuff here</tag>"

my_regex = r"<tag>.*?<\/tag>"

re.findall (my_regex, text) = [’/<tag>I have something here
<~ </tag>’, ‘<tag>but other stuff here</tag>']

Levenshtein Distance

N w

N | s

Cost

-

ROV X}
[N
-
[N
=

Operation per
char e 3 2 3 2
Insert 1 row
Delete 1
Replace 2
i column j = the number of operations required from convert

first ¢ characters of source to first j characters of target.

1. the top left cell: 0 operations 2. top row/first column:
increment by 1 because it takes n inserts 3.1. if characters in
row ¢ and column j are the same character, then

=c(i —1,j — 1) 3.2. otherwise

=1+ min(e(i,j — 1), ¢c(4,j — 1), c(i — 1,5 — 1))

Text Normalization/Pre-Processing

1. Lowercasing 2. True-casing 3. Punctuation Removal 4.
Stopword (funciton words such as articles, prepositions,
conjunctions and pronouns) Removal 5. Stemming (takes the
stem of the word - hacky e.g. policy and police become the
same word) 6. Lemmatization (map all morphologically
equivalent words)

N-Gram Language Model

P(wlh) = [Tg_; P(wylwy,
Data Sparsity. The exact history h might not be present in
the dataset we're using. Instead we can use the Markov

_1) This solution suffers from

Assumption and consider only the N prior words in the past.

Unigram Model

~ P(wn)

Bigram Model

~ P(wn|wp 1)

N-gram Model

~ Plwnlwn N41:n—1)
Calculating Probabilties
Plwln = G = S
history followed by the word and C(hx*) = C(h) is the count
of the history followed by any word

with Laplace (Add-One) Smoothing PL (w|h) =

where C(hw) is the count of the

C(hw)+1
C(R)FIVT]

Text Generation

Chose a starting point randomly on the line of most probable
n-grams. Unigram model: continue sampling words
randomly Bigram model: continue sampling bigrams
conditioned on previously generated word

COMPSCI 4NL3 - JOBLESS EDITION

Limitations

Neural Network

Our activation functions allow us to model non-linear

N-grams don’t do well at modeling long-term dependencies relationships.

b.c. we forget old context, and N-grams don’t do well with
new sequences with similar meaning

Advantages

A clear paradigm to introduce - training and test sets -
Perplexity as a metric for evaluation - Sampling to generate
sentences - Other modifications to improve the model

\
|
1
1
1
1
Naive Bayes Text Classification :
1

. _ PWe)P(c) ; ;) is
P(c|W) = W) ~ P(W|c)P(c) where P(c) is the o _J L
. - . Count(c)
prior probability of class c i.e. Wt((D)' number of docs Hidden Layer 1 Hidden Layer n Output Layer
with class ¢ divided by count of all docs D h,=aW. X+b) k)
1

a(w,,

- P(W) we could use a language model to get the probability
of this sequence of words, but it doesn’t change with respect

to ¢ so it’s not required to get relative probabilities between Activation Functions
classes Sigmoid /ﬁ Ll:l% :ml]}
- P(W|c) is a bit more complicated so we make the two @ " .
following assumptions tanh I out
tanh(z) max(o] = + by w2+ bs)
Assumptions R / e /
max(0, 2 / oy 20
Order of the words doesn’t matter:
P(Wlc) = P(wy, ..., wnlc) such that the likelihood of the Functi z S
’ nction Type Equation Derivative
sequence given ¢ uses a Bag of Words q
Words are conditionally independent:
P(Wlc) = P(wy,...,wnlc) = P(wyle) - P(wn|c) such Linear flx)=ax+c fx)=a
that the probability of observing word A does not affect the
probability of observing word B
Sigmoid o9 =— F69 =109 (1- 1))
Solution Derivation 1+e7*
¢ = arg max.cc P(c|W) = argmax,c o P(e) [1]1 P(w;|c)
2 () = 2
it’s better to operate in log space to avoid underflow TanH 09 = tanh(9) = o=z - 1 f09=1-x)
= argmax ¢ log P(¢) + 2.1 log P(w;|c) this is considered
a Linear Classifier!
To avoid division be zero, smoothing P(w;|c) =
count(w;,c)+1 _ count(w;,c)+1 0 for x<0 0 for x<0
Swev Count.aFD) = (£, y count(w,e))+ V] ReLl 9= re9=
xforx 20 1 forx 20
Logistic Regression Text Classification
Binary
Supervised learning method where X is our TF-IDF counts, ax for x<0 a for x<0
Y € {0, 1} our binary class. Parametric ReLU)= fx) =
) n xforx 20 1 forx20
Our model is P(y = 1|z) = o ((z L wlrl) +)
= o(w - © + b) where z is our score i.e. P(y = 1|z), w are our
weights, x is our features, b is our bias, o is sigmoid function a(e®-1) forx<o 70+ forx<o
) = fx)=
Ezample ELU X forx20 1 forx 20
Variablo £} <3 FT) <5 X
Moaning | Count TNo” = [Cownt T [Tog(word
positive document Lot/2nd document
fozicon pers Backpropagation Example
Woight 77 T 77 (1B} 53) Backpropagation Example

and Bias = 0.1 Learning rate n=0.1

Multinomial (W,
Represent Y as One-Hot Encoding and use SoftMax to map o(Wsh)
values to a Probability Distribution. Now, we will have
separate weights for each class! For predections, we pick the
class with the highest probability.

SoftMax

For each element 1 < i < K, softmax(z;) =

e®i -
K J
SE e

Binary Logistic Regression

P(+) = 1- p(-)
o Lagie & Output y Feature Selection
ulionislLogisi Regression Sutput J ¢
) k fstr For example, given sentence 1 (S1) and sentence 2 (S2), does

ey W W S1 entail S27 1. BLEU Score: The number of overlapping
e W 1o n-grams between two strings 2. Difference in length 3.
- . I fntars X Overlap of words: absolute count, percentage overlap, over:
et vissick [EANEIesEm Cuptel all words, nouns, verbs, adjectives, adverbs 4. Indicator for

' Y every unigram and bigram in S2 5. Count of each unigram
Lapat words " dessert was great Input words dessert was great

pair between S1 and S2 that have same POS 6. Count of each account frequency). J =

bigram pair between S1 and S2 that have the same POS in the

second word

Gradient Descent

Let y be correct label for input =, § be output of o(w - = + b),

L(§,y) = —[ylogd + (1 — y) log(1 — §)] be the loss function

(the negative log-likelihood)

Then we update our parameters such that we find our optimal

6 6 = argming T}L ity LCE(f(:E(l): 0), y(l)) where Lo is

the loss of the true label and model prediction given 6 and

«(1) and L
m

dataset

> i%, gives the average overall points in the

Updated a single parameter

witl = w? — 5L L(f(2; w), y) where 7 is the learning rate

Update all parameters
0l = 0" —nVL(f(2:0),v)

Parallelization

Pack everything into matrices. Modern compilers and GPUs
can do matrix operations in parallel!!

Overfitting

For example, using the wrong features (e.g. model relies on
the count of the word ”Jalapenos” when trying to differentiate
between positive and negative statements because in the
corpus, people had good things to say about Jalapenos)

This is what the overfitting curve looks like

The Learning Curves

Loss
training
Epochs
Regularization
L2

6 = arg maxg [Z:":l log P(y(i) |1(7))} —a Z?:l 9]2. penalty is
much higher for large values

L1

6 = arg maxg [25'21 log P(y(i)|x(’i>)} —axn 10,
Hyperparameter Tuning

Grid Search

import numpy as np
for 1r in np.linspace(0.01, 0.1, num=5):
for bs in np.linspace (8, 32, num=4):
train model, eval on validation

Random Search

import numpy as np

trials = 20

for i in range(trials):
1r = np.random.uniform(0.01,
bs = np.random.randint (8, 32)
train model, eval on validation

0.1)

Cross Validation

K-Fold

1. split into k equal parts 2. test one part and train on the
ohers 3. do this for each fold 4. average performance metric
across all folds

Leave One Out

If you have very little data, set K to the number of instances
(e.g. train on all instances except one test on that one
instance.)

Clustering

K-Means

1. randomly add k cluster centroids 2. assign points to
nearest centroid 3. update the centroids based on the points
4. reassign points to centroids 5. move the centroids 6.
repeat until convergence

Jaccard Similarity

Similarity between phrases or sentences. Mentioning
something more often does not matter. (It does not take into
|ANB]|

TAUB|

Term Frequency Representation (TDM)

Each element in the vector represents the number of times the
corresponding word appears in the document. Unlike Jaccard
Similarity, frequency of terms plays into our similarity
calculations. However, sometimes, stop words are a way of
telling our models which words are important!

Similarity

Euclidian Distance

d(@j, @) = \/Zm=1(Tim — Tjm)?

Co-sine Distance

1— % the difference between angles

Term Frequency Inverse Document Frequency
(TF-IDF)

Term Frequency (TF)

The number of timers a term (token) appears in the document

Type Description

Binary 1 if present, else O

Count Number of times it appears
extcount

Frequency total terms in document

Log normalized count log(1l 4+ count)

Inverse Document Frequency (IDF)
The inverse of term popularity in the overall corpus.
c
IDF(w, ¢) = log (|d€c".u‘)€d\
for each document in the corpus, how many documents have
the word
- the intuition between the log is that at some point, if the
word is soo frequent, we aren’t really getting that much
information by the word being repeated again - the intuition
behind the denominator is that if this word appears in all the
documents, it is not important at all

i.e. for word w and corpus ¢ =

Example
Doc Content
T Jalapenos have seeds
2 Donuts are great
3 Jalapenos have flavor
words = [jalapenos, have, seeds, donuts, are, great, flavor|
TF=[1 1 1 0 0 0 0]
IDF = [105% log3 log3 0 0 0 0}

Limitations

TF-IDF still doesn’t capture semantic similarity well. Our
matrix if very sparse, which can be inefficient for memory and
computation.

Latent Dirichlet Allocation (LDA)

Assume each document has a probability of belonging to a
topic, each word has a probability of belonging to a topic,
words in the same document are more likely to be in the same
topic

Let c; be the number of topics, ¢y be the number of words, z
the word by document array (randomly initialized topics), ng
doc by topic matrix of counts, nq, topic by word matrix of
counts, ny vector of counts by topics

repeat N times:
for each word w in document d:

remove w’s topic z[d][w] from nd, nw, nt

pz = \frac{nw([:,w] + \beta}{nt + cw \times \beta}
< % \frac{nd[d,:] + \alpha}{\text{len} (d)
<+ + ct \times a}

p = pz \times \text{sum} ()

new topic z([d][w] sampled from pz

add count for new topic back to nd, nw, nt

where B is Laplace Smoothing over words, « is Laplace

Smoothing over topics, %tw] is the count of words in a
. . . ongld,:] .
topic over the number of words in a topic, T is the

count of words in a document over the number of words in a
document

Classification Evaluation
Accuracy

TP+TN
P+N

Precision
TP
TP+FP
Macro Precision
The average precision amongst all N classes ¢1,...,¢cn
+# X Precision(c;)
Recall

TP
TP+FN

Macro Recall

The average recall amongst all N classes cq, .
% >~ Recall(c;)

F1 Score

— 9 x Precision-Recall
Precision+Recall

Comparing Classifiers

Assume Null Hypothesis/HO (both of our models come from
the *same* distribution) is true and determine the range of
probable results. Compute probability that the actual
(observed) result is in that range. If low, there is evidence to
reject HO in favor of H1.

Using a T-Test would require many samples and assumes we
are working with a normal distribution.

Non-Parametric Tests
Bootstrapped

sample with replacement
Let s be the number of times the difference of new test set is
> 0ie s =08(x;) —(z) > 0 the number of times we sampled
a difference at least as large as the observed difference

s

The p-value is defined as p = b i.e. the probability of an
observation at least as large as the observed one is happening
under the HO (where HO = B is actually not better than A, in
general).

However, we are sampling from our test set which does not
have mean 0. The mean is §(x), so instead we should check
5(xy) — 8(z) > 8(x) = 6(x;) > 26()

Language Model Evaluation

Perplexity

It’s the inverse of the probability that the model assigns to
the held out data (lower is better). Shows what is the
probability that it will be in the right bin

2

Perplexity (W) = P(wjwsg ... wn)

N-Gram
Then for an n-gram language model
N
NI 7

I —los(P(wilwy -

wiq .

—1)

Unigram

VI, peay

Bigram

Topic Model Evaluation: Intrusion Methods

Using, for example, Amazon mechanical Turk
Word Intrusion

Are topics meaningful, interpretable, coherent, useful? e.g.
take the highest probability words from a topic, take a
high-probability word form another topic and add it, hypothesis
if the topics are interpretable, users with consistency choose
the correct intruder

Topic Intrusion

Is assignment of topics to documents meaningful, appropriate,
useful? e.g display document title and first 500 characters,
show the three topics with highest probability and one topic
chosen randomly, have the user click on the set of words that
is out of place, hypothesis if the association of topics to a
document is interpretable, users with consistently choose the
true intruding topic

Topic Coherence (Umass Version)

D) ,ul“))-u

ot vy =5 M_ st iog where

D)

C(t; V(t)) is the coherence of topic t given V (t), the M most
probable words in t, D(v) how many documents contain word
v, D(v,v’) how many documents contain both words
(co-document frequency)

Discriminative vs Generative

[Mecthod | Generative Discriminative]
Tearns Estimate P(x]ly) to | Directly estimate
then deduce P(yl|z) P(yllz)

Q&A
the set of all alphabetic strings [a-zA-Z]+
the set of all lower case alphabetic strings ending in a b
\b[a-z]*b\b
the set of all strings from the alphabet a, b such that each a is
immediately preceded by and immediately followed by a b \b
b+ (ab+)+ \b
the set of all strings with two consecutive repeated words
(e.g., "Humbert Humbert” and ”the the” but not "the bug” or
7the big bug”) (.4)\b \1
all strings that start at the beginning of the line with an
integer and that end at the end of the line with a word
" [0-9]4.*[A-Za-z]+$
all strings that have both the word grotto and the word raven
in them (but not, e.g., words like grottos that merely contain
the word grotto) \b grotto \b .* \b raven \b [\b raven \b .*
\b grotto \b
ELIZA-like program

s/.* YOU ARE

(depressed|sad) .+/I AM SORRY TO HEAR YOU ARE

— \1/ s/.*
YOU ARE (depressed|sad) .+/WHY DO YOU THINK YOU ARE \1/ s
— /.x
all .«/IN WHAT WAY/ s/.«*
always .x/CAN YOU THINK OF A SPECIFIC EXAMPLE/
Edit distance of “leda” to “deal”.
D A L
0 1 3 4
L 1 1 2 3 3
E 2 2 1 2 3
D |3 |2 2 2 3
A 3 3 2 3
All the non-zero trigram probabilities.
<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

C(wp_g,Wp_1,wn)
Clwp_2,wp_1)
P(am|(s), I) = 3 P(Sam|l,am) = %
probability of i want chinese food. One using regular table,

another using the add-1 smoothed table.

P(i want chinese food) =

P(i|) P(want|i) P(chinese|want) P(food|chinese) P((/s)|food) =
0.0001896 using add-1 smoothing = 0.000002406

Which is higher? Why?

Unsmoothed is higher because the bigrams used in the
sentence are common in the corpus. However, with add-1
smoothing, the probability mass is redistributed to account
for unseen n-grams, reducing the probabilities of frequent
bigrams.

P(wn|wp_gwn_1) =

Using a bigram language model with add-one smoothing, what
is P(Sam|am)?
add <s> I am Sam </s> to line 3

P(Sam|am) = % = q2|+111 = 0.214

am “Word Pos Neg
What class will Naive Bayes T 505 1 016
assign to the sentence “I always | 0.07 | 0.06
always like foreign films.”? like 0.20 | 0.06
(assume equal prior foreign 0.04 0.15
probabilities for each class) films 0.08 0.11
For positive P(s|pos) = P(I|pos)P(always|pos)

P (like|pos) P (foreign|pos) P (films|pos)

= 0.09 X 0.07 X 0.29 X 0.04 X 0.08 = 0.00005846

For negative

P(s|neg) = P(I|neg)P(always|neg) P(like|neg)P (foreign|neg)
P(films|neg) = 0.16 X 0.06 X 0.06 X 0.15 X 0.11 = 0.00009504
Since P(s|neg) > P(s|pos)

the Naive Bayes classifier assigns the negative class to the

Using Naive Bayes assumption:
P(D|com) = P(fast|com) P(coup — com) P(shoot — com)
- 2 3 1 2 2

P(fly|com)P(com) = 16 X 16 X 16 X 16 X 5§ = 0.000073242
P(D|act) = P(fast|act)P(coup|act)P(shoot|act)

- 3 L 5 2 3 =
P(fly|act) P(act) = ig X ig X 18 X 18 X § = 0.000171468
Since P(D|act) > P(D|com) the document D is classified as
act
Train two models, multinomial vs binary naive Bayes, both
with add-1 smoothing.
Classify ” A good, good plot and great characters, but
poor acting.”
Do the two models agree or disagree?

Doc “Good” “Poor” “Groat” Class
d1 3 0 3 pos
d2 0 1 2 pos
ds 1 3 0 neg
d4 0 2 0 neg
ds 0 2 0 neg
Priors P(pos) = % = 0.5,P(neg) = % =0.5
Vocab |V| =3
N . _ C(w,class)+1
Likelihoods P(w|class) = S C(w,class) ¥V
P(good|pos) = % = £, P(good|neg) = 1244;13 =3
141 10+1
P(poor|pos) = g5 = 2, P(poor|neg) = 7955 = 1+
P(great|pos) = gj% =5, P(areat|neg) = % =3
Multinomial:
P(D|pos) = P(good|pos)? P(poor|pos)P(great|pos) P (pos)
_ (42 2 —
= (ﬁ) x 2 x 8 x 0.5 =0.000055

For negative
P(D|neg) = P(good|neg)?P(poor|neg) P (great|neg) P (neg)

= (& 2><%>< x 0.5 =0.00014

since P(D]|neg) > P(D|pos) the document D is classified as
negative

Binarized

P(D|pos) = P(good|pos)P(poor|pos) P(great|pos) P(pos)

=2 x 32 x2x05=0.0139

P(D|neg) = P(good|neg)P(poor|neg)P(great|neg) P (neg)
3 x 2 x4 x05=0.0197

Since P(D|neg) > P(D|pos)

Therefore, both models classify the document as negative,

meaning they agree on the classification.

Credits

e Sarah for initial Overleaf version

sentence.

Rev. Cat

Compute the most likely class —fun—coup, Tove, Tove o

for . fast, fur, shoot act

fast, coup, shoot, fly coup, fly, fast, fun com

Assume a naive Bayes and fur, shoot, shoot, fun act
- . s , s

add-1 smoothing. fly, fast, shoot, love act
©

First, priors P(com) =
Vocab size |V | =7
Likelihoods for each word where
C(w,class)+1
> C(w,class)+[V]
Computed Likelihoods:

£ = 0.4, Plact) = 3

P(w]|class) =

P(fast|com) = % = %,P(fast\act) = % = %
P(couploom) = ZEL = & P(couplact) = &L = &
P(shoot|com) = % = 1, P(shoot|act) = %_;7 =5
P(fly|com) = % = & P(flylact) = 1114;17 =&

	Regular Expressions
	Example of Not Greedy

	Levenshtein Distance
	Text Normalization/Pre-Processing
	N-Gram Language Model
	Unigram Model
	Bigram Model
	N-gram Model
	Calculating Probabilties
	Text Generation
	Limitations
	Advantages

	Naive Bayes Text Classification
	Assumptions
	Solution Derivation

	Logistic Regression Text Classification
	Binary
	Example

	Multinomial
	SoftMax

	Neural Network
	Activation Functions
	Backpropagation Example

	Feature Selection
	Gradient Descent
	Updated a single parameter
	Update all parameters

	Parallelization
	Overfitting
	Regularization
	L2
	L1

	Hyperparameter Tuning
	Grid Search
	Random Search

	Cross Validation
	K-Fold
	Leave One Out

	Clustering
	K-Means

	Jaccard Similarity
	Term Frequency Representation (TDM)
	Similarity
	Euclidian Distance
	Co-sine Distance

	Term Frequency Inverse Document Frequency (TF-IDF)
	Term Frequency (TF)
	Inverse Document Frequency (IDF)
	Example
	Limitations

	Latent Dirichlet Allocation (LDA)
	Classification Evaluation
	Accuracy
	Precision
	Macro Precision
	Recall
	Macro Recall
	F1 Score

	Comparing Classifiers
	Non-Parametric Tests
	Bootstrapped

	Language Model Evaluation
	Perplexity
	N-Gram
	Unigram
	Bigram

	Topic Model Evaluation: Intrusion Methods
	Word Intrusion
	Topic Intrusion

	Topic Coherence (Umass Version)

	Discriminative vs Generative
	Q&A
	Credits

