
COMPSCI 4NL3 - JOBLESS EDITION

Regular Expressions

Pattern Matches

\s whitespace

\d any digit

{N} exactly N of the previous item

\w any ”word” characters (includes
numbers)

\S, \D, \W anything NOT in the lowercase
version of that pattern

\b word boundary

ˆ start of the string

$ end of the string

A|B A or B

[a − z], [abcde],[0 − 9] any character in the brackets of
specified range of characters

. any character

? 0 or 1 of the preceding character

∗ 0 or more of the preceding char-
acter

+ 1 or more of the preceding char-
acter

.∗? not greedy

Example of Not Greedy

text = "<tag>I have something here</tag> <tag>but other
↪→ stuff here</tag>"

my_regex = r"<tag>.*?<\/tag>"
re.findall(my_regex, text) = [’<tag>I have something here

↪→ </tag>’, ’<tag>but other stuff here</tag>’]

Levenshtein Distance

Operation Cost per
char

Insert 1

Delete 1

Replace 2

row

i column j = the number of operations required from convert
first i characters of source to first j characters of target.

1. the top left cell: 0 operations 2. top row/first column:
increment by 1 because it takes n inserts 3.1. if characters in
row i and column j are the same character, then
= c(i − 1, j − 1) 3.2. otherwise
= 1 + min(c(i, j − 1), c(i, j − 1), c(i − 1, j − 1))

Text Normalization/Pre-Processing
1. Lowercasing 2. True-casing 3. Punctuation Removal 4.
Stopword (funciton words such as articles, prepositions,
conjunctions and pronouns) Removal 5. Stemming (takes the
stem of the word - hacky e.g. policy and police become the
same word) 6. Lemmatization (map all morphologically
equivalent words)

N-Gram Language Model
P (w|h) =

∏n
k=1 P (wk|w1:k−1) This solution suffers from

Data Sparsity. The exact history h might not be present in
the dataset we’re using. Instead we can use the Markov
Assumption and consider only the N prior words in the past.

Unigram Model

≈ P (wn)

Bigram Model

≈ P (wn|wn−1)

N-gram Model

≈ P (wn|wn−N+1:n−1)

Calculating Probabilties

P (w|h) =
C(hw)
C(h⋆)

=
C(hw)
C(h)

where C(hw) is the count of the

history followed by the word and C(h∗) = C(h) is the count
of the history followed by any word

with Laplace (Add-One) Smoothing PL(w|h) =
C(hw)+1
C(h)+|V |

Text Generation

Chose a starting point randomly on the line of most probable
n-grams. Unigram model: continue sampling words
randomly Bigram model: continue sampling bigrams
conditioned on previously generated word

Limitations

N-grams don’t do well at modeling long-term dependencies
b.c. we forget old context, and N-grams don’t do well with
new sequences with similar meaning

Advantages

A clear paradigm to introduce - training and test sets -
Perplexity as a metric for evaluation - Sampling to generate
sentences - Other modifications to improve the model

Naive Bayes Text Classification

P (c|W) =
P (W |c)P (c)

P (W)
≈ P (W |c)P (c) where P (c) is the

prior probability of class c i.e.
Count(c)
Count(D)

, number of docs

with class c divided by count of all docs D

- P (W) we could use a language model to get the probability
of this sequence of words, but it doesn’t change with respect
to c so it’s not required to get relative probabilities between
classes

- P (W |c) is a bit more complicated so we make the two
following assumptions

Assumptions

Order of the words doesn’t matter:
P (W |c) = P (w1, . . . , wn|c) such that the likelihood of the
sequence given c uses a Bag of Words

Words are conditionally independent:
P (W |c) = P (w1, . . . , wn|c) = P (w1|c) · · · · · P (wn|c) such
that the probability of observing word A does not affect the
probability of observing word B

Solution Derivation

ĉ = arg maxc∈C P (c|W) = arg maxc∈C P (c)
∏N

i=1 P (wi|c)

it’s better to operate in log space to avoid underflow
= arg maxc∈C log P (c) +

∑n
i=1 log P (wi|c) this is considered

a Linear Classifier!

To avoid division be zero, smoothing P (wi|c) =

count(wi,c)+1∑
w∈V (count(w,c)+1)

=
count(wi,c)+1(∑

w∈V count(w,c)
)
+|V |

Logistic Regression Text Classification

Binary

Supervised learning method where X is our TF-IDF counts,
Y ∈ {0, 1} our binary class.

Our model is P (y = 1|x) = σ
((∑n

i=1 wixi

)
+ b

)
= σ(w · x + b) where z is our score i.e. P (y = 1|x), w are our
weights, x is our features, b is our bias, σ is sigmoid function

Example

Variable x1 x2 x3 x4 x5 x6

Meaning Count
positive
lexicon
words

Count neg-
ative lexi-
con words

”No” is in
document

Count
1st/2nd
person
pronouns

”!” is in
document

log(word
count)

Value 3 2 1 3 0 4.19

Weight 1.2 -4 2.4 0.1 3.3 -0.3

and Bias = 0.1

Multinomial

Represent Y as One-Hot Encoding and use SoftMax to map
values to a Probability Distribution. Now, we will have
separate weights for each class! For predections, we pick the
class with the highest probability.

SoftMax

For each element 1 ≤ i ≤ K, softmax(zi) = ezi∑K
j=1

e
zj

Neural Network
Our activation functions allow us to model non-linear
relationships.

Activation Functions

Backpropagation Example

Feature Selection
For example, given sentence 1 (S1) and sentence 2 (S2), does
S1 entail S2? 1. BLEU Score: The number of overlapping
n-grams between two strings 2. Difference in length 3.
Overlap of words: absolute count, percentage overlap, over:
all words, nouns, verbs, adjectives, adverbs 4. Indicator for
every unigram and bigram in S2 5. Count of each unigram
pair between S1 and S2 that have same POS 6. Count of each

bigram pair between S1 and S2 that have the same POS in the
second word

Gradient Descent
Let y be correct label for input x, ŷ be output of σ(w · x + b),
L(ŷ, y) = −[y log ŷ + (1 − y) log(1 − ŷ)] be the loss function
(the negative log-likelihood)
Then we update our parameters such that we find our optimal

θ̂ θ̂ = arg minθ
1
m

∑m
i=1 LCE(f(x(i); θ), y(i)) where LCE is

the loss of the true label and model prediction given θ and

x(i) and 1
m

∑m
i=1 gives the average overall points in the

dataset

Updated a single parameter

wt+1 = wt − η d
dw

L(f(x;w), y) where η is the learning rate

Update all parameters

θt+1 = θt − η∇L(f(x; θ), y)

Parallelization
Pack everything into matrices. Modern compilers and GPUs
can do matrix operations in parallel!!

Overfitting
For example, using the wrong features (e.g. model relies on
the count of the word ”Jalapenos” when trying to differentiate
between positive and negative statements because in the
corpus, people had good things to say about Jalapenos)
This is what the overfitting curve looks like

Regularization
L2

θ̂ = arg maxθ

[∑m
i=1 log P (y(i)|x(i))

]
− α

∑n
j=1 θ2j penalty is

much higher for large values

L1

θ̂ = arg maxθ

[∑m
i=1 log P (y(i)|x(i))

]
− α

∑n
j=1 |θj |

Hyperparameter Tuning
Grid Search

import numpy as np
for lr in np.linspace(0.01, 0.1, num=5):
for bs in np.linspace(8, 32, num=4):

train model, eval on validation

Random Search

import numpy as np
trials = 20
for i in range(trials):
lr = np.random.uniform(0.01, 0.1)
bs = np.random.randint(8, 32)
train model, eval on validation

Cross Validation
K-Fold

1. split into k equal parts 2. test one part and train on the
ohers 3. do this for each fold 4. average performance metric
across all folds

Leave One Out

If you have very little data, set K to the number of instances
(e.g. train on all instances except one test on that one
instance.)

Clustering
K-Means

1. randomly add k cluster centroids 2. assign points to
nearest centroid 3. update the centroids based on the points
4. reassign points to centroids 5. move the centroids 6.
repeat until convergence

Jaccard Similarity
Similarity between phrases or sentences. Mentioning
something more often does not matter. (It does not take into

account frequency). J =
|A∩B|
|A∪B|

Term Frequency Representation (TDM)
Each element in the vector represents the number of times the
corresponding word appears in the document. Unlike Jaccard
Similarity, frequency of terms plays into our similarity
calculations. However, sometimes, stop words are a way of
telling our models which words are important!

Similarity

Euclidian Distance

d(xi, xi) =
√∑

m=1(xim − xjm)2

Co-sine Distance

1 − A·B
|A||B| the difference between angles

Term Frequency Inverse Document Frequency
(TF-IDF)
Term Frequency (TF)

The number of timers a term (token) appears in the document

Type Description

Binary 1 if present, else 0

Count Number of times it appears

Frequency extcount
total terms in document

Log normalized count log(1 + count)

Inverse Document Frequency (IDF)

The inverse of term popularity in the overall corpus.

IDF(w, c) = log

(
|c|

|d∈c:w∈d|

)
i.e. for word w and corpus c =

for each document in the corpus, how many documents have
the word
- the intuition between the log is that at some point, if the
word is soo frequent, we aren’t really getting that much
information by the word being repeated again - the intuition
behind the denominator is that if this word appears in all the
documents, it is not important at all

Example

Doc Content

1 Jalapenos have seeds

2 Donuts are great

3 Jalapenos have flavor

words =
[
jalapenos, have, seeds, donuts, are, great, flavor

]
TF =

[
1 1 1 0 0 0 0

]
IDF =

[
log 3

2
log 3

2
log 3 0 0 0 0

]
Limitations

TF-IDF still doesn’t capture semantic similarity well. Our
matrix if very sparse, which can be inefficient for memory and
computation.

Latent Dirichlet Allocation (LDA)
Assume each document has a probability of belonging to a
topic, each word has a probability of belonging to a topic,
words in the same document are more likely to be in the same
topic
Let ct be the number of topics, cw be the number of words, z
the word by document array (randomly initialized topics), nd
doc by topic matrix of counts, nw topic by word matrix of
counts, nt vector of counts by topics

repeat N times:
for each word w in document d:

remove w’s topic z[d][w] from nd, nw, nt
pz = \frac{nw[:,w] + \beta}{nt + cw \times \beta}

↪→ * \frac{nd[d,:] + \alpha}{\text{len}(d)
↪→ + ct \times a}

p = pz \times \text{sum}()
new topic z[d][w] sampled from pz
add count for new topic back to nd, nw, nt

where β is Laplace Smoothing over words, α is Laplace

Smoothing over topics,
nw [:,w]

nt
is the count of words in a

topic over the number of words in a topic,
nd[d,:]
len(d)

is the

count of words in a document over the number of words in a
document

Classification Evaluation

Accuracy

TP+TN
P+N

Precision

TP
TP+FP

Macro Precision

The average precision amongst all N classes c1, . . . , cn
1
N

∑
Precision(ci)

Recall

TP
TP+FN

Macro Recall

The average recall amongst all N classes c1, . . . , cn
1
N

∑
Recall(ci)

F1 Score

= 2 × Precision·Recall
Precision+Recall

Comparing Classifiers

Assume Null Hypothesis/H0 (both of our models come from
the *same* distribution) is true and determine the range of
probable results. Compute probability that the actual
(observed) result is in that range. If low, there is evidence to
reject H0 in favor of H1.

Using a T-Test would require many samples and assumes we
are working with a normal distribution.

Non-Parametric Tests

Bootstrapped

sample with replacement

Let s be the number of times the difference of new test set is
≥ 0 i.e. s = δ(xi) − δ(x) ≥ 0 the number of times we sampled
a difference at least as large as the observed difference

The p-value is defined as p = s
b

i.e. the probability of an

observation at least as large as the observed one is happening
under the H0 (where H0 = B is actually not better than A, in
general).

However, we are sampling from our test set which does not
have mean 0. The mean is δ(x), so instead we should check
δ(xi) − δ(x) ≥ δ(x) ⇒ δ(xi) ≥ 2δ(x)

Language Model Evaluation

Perplexity

It’s the inverse of the probability that the model assigns to
the held out data (lower is better). Shows what is the
probability that it will be in the right bin

Perplexity(W) = P (w1w2 . . . wn)
− 1

N = N
√

1
P (w1w2...wn)

N-Gram

Then for an n-gram language model

= N
√∏N

i=1
1

P (wi|w1...wi−1)

= e
1
N

∑N
i=1 − log(P (wi|w1...wi−1))

Unigram

= N
√∏N

i=1
1

P (wi)

Bigram

= N
√∏N

i=1
1

P (wi|wi−1)

Topic Model Evaluation: Intrusion Methods

Using, for example, Amazon mechanical Turk

Word Intrusion

Are topics meaningful, interpretable, coherent, useful? e.g.
take the highest probability words from a topic, take a
high-probability word form another topic and add it, hypothesis
if the topics are interpretable, users with consistency choose
the correct intruder

Topic Intrusion

Is assignment of topics to documents meaningful, appropriate,
useful? e.g display document title and first 500 characters,
show the three topics with highest probability and one topic
chosen randomly, have the user click on the set of words that
is out of place, hypothesis if the association of topics to a
document is interpretable, users with consistently choose the
true intruding topic

Topic Coherence (Umass Version)

C(t;V (t)) =
∑M

m=2
∑m−1

l=1
log

D(v
(t)
m ,v

(t)
l

)+1

D(v
(t)
t)

where

C(t;V (t)) is the coherence of topic t given V (t), the M most
probable words in t, D(v) how many documents contain word

v, D(v, v′) how many documents contain both words
(co-document frequency)

Discriminative vs Generative
Method Generative Discriminative

Learns Estimate P (x∥y) to
then deduce P (y∥x)

Directly estimate
P (y∥x)

Q&A
the set of all alphabetic strings [a-zA-Z]+
the set of all lower case alphabetic strings ending in a b
\b[a-z]*b\b
the set of all strings from the alphabet a, b such that each a is
immediately preceded by and immediately followed by a b \b
b+ (ab+)+ \b
the set of all strings with two consecutive repeated words
(e.g., ”Humbert Humbert” and ”the the” but not ”the bug” or
”the big bug”) (.+)\b \1
all strings that start at the beginning of the line with an
integer and that end at the end of the line with a word
ˆ[0-9]+.*[A-Za-z]+$
all strings that have both the word grotto and the word raven
in them (but not, e.g., words like grottos that merely contain
the word grotto) \b grotto \b .* \b raven \b \b raven \b .*
\b grotto \b
ELIZA-like program

s/.* YOU ARE (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE
↪→ \1/ s/.*

YOU ARE (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/ s
↪→ /.*

all .*/IN WHAT WAY/ s/.*
always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Edit distance of “leda” to “deal”.
D E A L

0 1 2 3 4

L 1 1 2 3 3

E 2 2 1 2 3

D 3 2 2 2 3

A 4 3 3 2 3

All the non-zero trigram probabilities.

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

P (wn|wn−2wn−1) =
C(wn−2,wn−1,wn)

C(wn−2,wn−1)

P (am|⟨s⟩, I) = 1
2

P (Sam|I, am) = 1
2

probability of i want chinese food. One using regular table,
another using the add-1 smoothed table.
P (i want chinese food) =
P (i|)P (want|i)P (chinese|want)P (food|chinese)P (⟨/s⟩|food) =
0.0001896 using add-1 smoothing = 0.000002406
Which is higher? Why?
Unsmoothed is higher because the bigrams used in the
sentence are common in the corpus. However, with add-1
smoothing, the probability mass is redistributed to account
for unseen n-grams, reducing the probabilities of frequent
bigrams.
Using a bigram language model with add-one smoothing, what
is P (Sam|am)?

add <s> I am Sam </s> to line 3

P (Sam|am) =
C(am,Sam)+1

C(am)+V
= 2+1

3+11
= 0.214

What class will Naive Bayes
assign to the sentence “I
always like foreign films.”?
(assume equal prior
probabilities for each class)

Word Pos Neg

I 0.09 0.16
always 0.07 0.06
like 0.29 0.06

foreign 0.04 0.15
films 0.08 0.11

For positive P (s|pos) = P (I|pos)P (always|pos)
P (like|pos)P (foreign|pos) P (films|pos)
= 0.09 × 0.07 × 0.29 × 0.04 × 0.08 = 0.00005846
For negative
P (s|neg) = P (I|neg)P (always|neg) P (like|neg)P (foreign|neg)
P (films|neg) = 0.16 × 0.06 × 0.06 × 0.15 × 0.11 = 0.00009504
Since P (s|neg) > P (s|pos)
the Naive Bayes classifier assigns the negative class to the
sentence.

Compute the most likely class
for
”fast, coup, shoot, fly”
Assume a naive Bayes and
add-1 smoothing.

Rev. Cat.

fun, coup, love, love com
fast, fur, shoot act
coup, fly, fast, fun com
fur, shoot, shoot, fun act
fly, fast, shoot, love act

First, priors P (com) = 2
5

= 0.4,P (act) = 3
5

= 0.6

Vocab size |V | = 7
Likelihoods for each word where

P (w|class) =
C(w,class)+1∑
C(w,class)+|V |

Computed Likelihoods:

P (fast|com) = 1+1
9+7

= 2
16

,P (fast|act) = 2+1
11+7

= 3
18

P (coup|com) = 2+1
9+7

= 3
16

,P (coup|act) = 0+1
11+7

= 1
18

P (shoot|com) = 0+1
9+7

= 1
16

,P (shoot|act) = 4+1
11+7

= 5
18

P (fly|com) = 1+1
9+7

= 2
16

,P (fly|act) = 1+1
11+7

= 2
18

Using Naive Bayes assumption:
P (D|com) = P (fast|com) P(coup — com) P(shoot — com)

P (fly|com)P (com) = 2
16

× 3
16

× 1
16

× 2
16

× 2
5

= 0.000073242

P (D|act) = P (fast|act)P (coup|act)P (shoot|act)
P (fly|act)P (act) = 3

18
× 1

18
× 5

18
× 2

18
× 3

5
= 0.000171468

Since P (D|act) > P (D|com) the document D is classified as
act
Train two models, multinomial vs binary naive Bayes, both
with add-1 smoothing.
Classify ”A good, good plot and great characters, but
poor acting.”
Do the two models agree or disagree?

Doc “Good” “Poor” “Great” Class

d1 3 0 3 pos
d2 0 1 2 pos
d3 1 3 0 neg
d4 0 2 0 neg
d5 0 2 0 neg

Priors P (pos) = 2
4

= 0.5,P (neg) = 2
4

= 0.5

Vocab |V | = 3

Likelihoods P (w|class) =
C(w,class)+1∑
C(w,class)+|V |

P (good|pos) = 3+1
9+3

= 4
12

, P (good|neg) = 2+1
14+3

= 3
17

P (poor|pos) = 1+1
9+3

= 2
12

, P (poor|neg) = 10+1
14+3

= 11
17

P (great|pos) = 5+1
9+3

= 6
12

, P (great|neg) = 2+1
14+3

= 3
17

Multinomial:
P (D|pos) = P (good|pos)2P (poor|pos)P (great|pos)P (pos)

=
(

4
12

)2 × 2
12

× 6
12

× 0.5 = 0.000055

For negative

P (D|neg) = P (good|neg)2P (poor|neg)P (great|neg)P (neg)

=
(

3
17

)2 × 11
17

× 3
17

× 0.5 = 0.00014

since P (D|neg) > P (D|pos) the document D is classified as
negative
Binarized
P (D|pos) = P (good|pos)P (poor|pos)P (great|pos)P (pos)

= 2
7

× 3
7

× 2
7

× 0.5 = 0.0139

P (D|neg) = P (good|neg)P (poor|neg)P (great|neg)P (neg)

= 3
9

× 2
9

× 4
9

× 0.5 = 0.0197

Since P (D|neg) > P (D|pos)
Therefore, both models classify the document as negative,
meaning they agree on the classification.

Credits
• Sarah for initial Overleaf version

	Regular Expressions
	Example of Not Greedy

	Levenshtein Distance
	Text Normalization/Pre-Processing
	N-Gram Language Model
	Unigram Model
	Bigram Model
	N-gram Model
	Calculating Probabilties
	Text Generation
	Limitations
	Advantages

	Naive Bayes Text Classification
	Assumptions
	Solution Derivation

	Logistic Regression Text Classification
	Binary
	Example

	Multinomial
	SoftMax

	Neural Network
	Activation Functions
	Backpropagation Example

	Feature Selection
	Gradient Descent
	Updated a single parameter
	Update all parameters

	Parallelization
	Overfitting
	Regularization
	L2
	L1

	Hyperparameter Tuning
	Grid Search
	Random Search

	Cross Validation
	K-Fold
	Leave One Out

	Clustering
	K-Means

	Jaccard Similarity
	Term Frequency Representation (TDM)
	Similarity
	Euclidian Distance
	Co-sine Distance

	Term Frequency Inverse Document Frequency (TF-IDF)
	Term Frequency (TF)
	Inverse Document Frequency (IDF)
	Example
	Limitations

	Latent Dirichlet Allocation (LDA)
	Classification Evaluation
	Accuracy
	Precision
	Macro Precision
	Recall
	Macro Recall
	F1 Score

	Comparing Classifiers
	Non-Parametric Tests
	Bootstrapped

	Language Model Evaluation
	Perplexity
	N-Gram
	Unigram
	Bigram

	Topic Model Evaluation: Intrusion Methods
	Word Intrusion
	Topic Intrusion

	Topic Coherence (Umass Version)

	Discriminative vs Generative
	Q&A
	Credits

