Trigonometry
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Newton’s Law of Cooling
dTr
T k(T =T,), T =T,

where 7(7) is temperature of body at time #, k > 0 is coefficient of heat transfer
and 7,,, is temperature of surroundings

T(t) = Ty + (T — Tm)e F(I70)

Draining a Tank

Rate of volume of liquid leaving the tank is proportional to, A,v, where A, is area of hole,

2
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t

Finally, volume of liquid in tank is V(1) = A &, where A, is
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Population Growth
% =rP, P() =P,

where P(f) is the population at time 7 and r is the rate of population growth.
Linear equation can be solved easily by integration. Gives exponential population growth:

P t

iP P
J ‘—:J rdt = log 20 =r(t—1ty)
P P P Py

o

P(1) = Pye’ =

2Z03 Exam

Realistic Population Growth
dP

P
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where ris rate of population growth and K is the carrying capacity
. This is also an autonomous ODE.
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Beem deflection

TABLE 3.9.1.

Ends of the Beam Boundary Condi-
tions

Embedded y=0,y’=0

Free y”=0,y"=0

Simply supported or y=0,y7=0

hinged

Hook’s Law of Springs

1
L I+s
unslre_lched___ L
& S -
X
equilibrium i
position
mg—ks=0 motion
(a) (b) ©)
Spring motion when deformed by gravity
Fg = — mg, where m is mass of

suspended weight. s > 0 is equilibrium
displacement under gravity

. X is additional displacement
from equilibrium position

+ Hooke’s law: F, = — k(s + ).
Note: x > ( indicates downward displacement
+ Force exerted on mass m by gravity: F, = mg.

+ Newton’s second law: F = ma = m¥.

Force balance:
mi=F+F, = mi=—k(s+x)+mg = —kx + (mg—ks)

=0
o L
= i+—x=0
m
= i+wlx=0

where = \/k/m is natural frequency of oscillations.

x(1) = ¢; coswt + ¢, sinwt
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Auxiliary equation is: 2 + 24 r + @* = 0 with solutions 7 = — A
3 Cases:

1. Overdamped: 2P-w?>0

2. Critically damped: A2 — @ = 0

3.Underdamped: 2> —w? <0

Can also apply external forcing:
Suppose we apply external force f(1) to suspended mass

Dynamical system is now nonhomogeneous:

mi+px+kx=f1)
or, dividing by m,

¥+ 2%+ w?x = F(1)
where F(t) = f(t)/m.

Llyl = y" + P(x)y + Q(z)y = f(=)

Thus, given complementary function y. = ¢, y; + ¢, ¥,, particular solution is
=Nty
where

y) (x) flx)
W(x)

Cauchy Euler Equations

General soloution is y = ="

Lyl = axZ% + bx% +cy=gx)
Auxiliary equation: am?+ (b —a)m+c =0
Case 1: distinct real roots m,, m, € R
Yolo) = ¢ x™ + ¢ 1™
Case 2: repeated root m € R
Ye¥) = ¢, x" + ¢, x" log x
Case 3: complex conjugate roots a £ iff, a,f € R

V(x) = x%[¢; cos(flogx) + ¢, sin(flogx)]

Simple harmonic motion with angular frequency , period T = 21/ and frequency 1/T = w/(27). Part ial d ifferent ial equat iOIlS

Simple harmonic motion is also known as free vibration because dynamical system is homogeneous

Equation of motion for simple harmonic motion
x(1) = ¢, coswt + ¢, sinwt
Is often written in an equivalent form involving two different constants: the amplitude A and phase ¢

x(1) = A cos(wt — )

where A = /¢ + ¢ and ¢ = arctan(c,/c,)

Dampened spring system

—ka — Ba’

where 8 > 0 is damping constant.

variations
Consider PDE with constant coefficients A, B, C, D, E, F:
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We classify PDE as one of three types according to value of B2 —4AC

> 0 hyperbolic
=0 parabolic
<0 elliptic

(e.g. wave equation),
(e.g. heat equation),
(e.g. Poisson equation).

B%-4AC

dx

For example, if there is heat transfer from
the lateral surface of a rod into a surround-
ing medium that is held at a constant tem-
perature up, then the heat equation (13) is
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where his a constant. In (14) the function F
could represent the various forces acting
on the string. For example, when external,
damping, and elastic restoring forces are
taken into account, (14) assumes the form

a

external force

heat equation

wave equation

laplace equation

damping restoring force
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We found general solution

nry N nmy
Y(y) = c3cosh = + ¢4 sinh—
a a

(15)

Imposing BC Y(0) =0 = ¢; =0== eigenfunction solutions compatible with BC are

. nmy
Yo0) =y, n=0, Y,(y)=sinh—, n=1,2,3, ...
a

Finally, using u,(x, y) = X, (x) ¥,(y) we find the complete set of eigenfunctions

nax nmy
uyx,y) =y, n=0 and u,(x,y) =A"cos—sinh—y, A= 1L25 0,
a a

Linear combinations of eigenfunctions give general solution

S nux n.
u(x,y) = Ayy + EA,,cos - sinh T”y

How do we impose BC u(x, b) = f(x)?

By computing coefficients A, such that

n=1

utx, b) = fix) = Agb+ Y

n=1
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Need to compute coefficients A, from Fourier series for f{x) by setting y = b:
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