General

sin? 6 + cos? 6 = 2sin 6 = 25sin 6 cos 0

logy, (x) = loge(x)/ loge (b)
Linalg

. R c

Matrix Multiplication: (a  b) - (d) = (ac + bd)

a ac ad
(b) (e 9= (bd bd)

a b\[(e f\_ (ae+bg af+bh

c d)\g n) T \ce+dg cf+dn
Diagonalization Given X, det |X — AI| = 0,
solve for values of A (eigenvalues) Xv = Av
(substitute in A, solve for v (eigenvector))

b):adfcb

Determinant (“
c d

a b c
d e f
g h i

aDet(e, h, f,i) —bDet(d, g, f, i) +cDet(d, g, e, h)
Adjoint (Hermitian Conjugate): AT = A*
(transpose the matrix and take the complex
conjugate of each element)

Complex Conjugate: Flip the sign of the
imaginary part of a complex number

Trace Sum the diagonal elements of a square
matrix

Partial Trace Partial trace for B:

Trprap = [¥)a (bla Tr(ld)p (¥la)
Multi-bit Dirac Notation |A) |[B) = |AB) The
dual of this is (BA|

Properties |A) (A| =1

Probability and Bayes’ Rule

Bayes’ theorem formula:

P(BJA)P(A)
P(B)

P(A|B) =

Examples of calculating conditional probabilities
(medical tests, particle detectors)
Poisson distribution:

AT e A
P(n) = '
n!

Classical Information Theory

Shannon Entropy/Information

H = —kY,; p(a;)log p(a;) By convention, we use
k =1 and log is base 2

Properties of entropy

Entropy must be non-negative, and is maximized
for a uniform distribution.

Thermodynamics
Gibbs Entropy: S = —k Y p; log p;

Communication Theory

Number of Typical Messages W ~ 2NH(p)
where H(p) is the entropy of the message and N
is the number of bits in the message.

A

Compression

factor for dlfferent values of p. As p approaches

0.5 from either side, we can compress the message

less and less, since there is more entropy we need
to encode.

Shannon’s Noiseless Coding
Theorem:

For a given message, we only need N H(p) bits to
encode it (definition of H(p) above)

Example: Let us have an alphabet A, B, C, D
with probabilities of 1/2,1/4,1/8,1/8
respectively. Entropy is

H = —(1/2log1/2 + 1/4log1/4...) = 7/4 bits
Therefore, a message N characters long can be
encoded in 7/4 - N bits.

Shannon’s Noisy Coding Theorem:

On average, we need at least bits to

No
1-H(aq)
encode one of 20 equally probable messages
(Ng is the original message length) where
H(q) = —[qlogq + (1 — q)log(1 — q)] is the
entropy associated with single bit error q.
Efficient Coding: Plot N/Ng — 1 vs g to see
when overhead becomes too “large”

Huffman Coding

1. Sort the probabilities

2. Combine the two lowest probabilities into a
tree, storing characters as branches and the
sum of their probabilities as the root

3. Repeat until all probabilities are combined,

and we reach a probability of 1
4. Set 0/1 to left/right (either pairing), and

traverse the tree to find the encoding

Dirac Notation
(@] = |9t

Ket Matrix
j0) or [1) 0

1) or |V) B

Diagonal Up % ﬂ
Diagonal Down % [,11]
Left Circular v B]
Right Circular = [,IJ

cos 6
0 [ in 9]

/246

11)
@) = cos £ |0) + €'? sin % 11y
+m:%<\0>+\1>) +y:%(|0>+i|1>>
500 = 1) —y = 5(10) —il1)

Change of basis

Let 6 be a rotation of basis vectors,
counterclockwise.

[z)
ly)

where |z’) and |y’) are the new basis vectors.

cos 0 |z’y — sin 6 |y’) and
sin 6 |z’) + cos 6 |y’)

Outer Product

¥1¢1
P21

P po

Given that [¢) = |¢) (¢| = Yo bo
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Quantum State Tomography

e Set a set of observables to uniquely determine
a state. For a single qubit, we can use the
Pauli operators.

o Prepare many copies of the state

o Measure the observables in states
{H,V}, {+45, —45},{LCP, RCP}
Decompose state as |¢) = ryy |[H) + ryet® V)
where ¢ = ¢y — ¢y

e Procedure

Perform measurement in {H, V} basis -

Probability of detecting H is r%, so

ri =P, e = T= Prg

o Pryigs—1/2
TR
P . _ 1/2—Prrcp
e = TGP (P
Operators

Operators produce another ket

Spectral Decomposition

Operator A can be decomposed

= Xiaqlag) (azl
Observable

Is an operator, likely one of the Pauli operators.
The measured results when observing in this
“direction” will be one of its eigenvalues.
Mean value of an observable Measuring an
observable V. = 3, v; |v;) (v;] in the state |¥)
Obtains result v; with probability

2
p(vi) = | (v |¥) |
Repeating measurement many times obtains
expectation value

(VY =X Pivg = 54 | (v 1) |20,

(Vg = (‘I’\V\‘I’)

Uncertainty

Variance is AVZ = (U|(V — (¥|V|¥))2|w)

v
AVZ = (9 |V2|w) — (v |V|¥)? = (V2) — <f/>2

Heisenberg Uncertainty Principle

AxAp > S (WI[A, Bl|¥) | (e.g. for [&,p] = il we
find Azap > &)

Pauli Operators

oo = (7 §) =10 al+m

. 1 [¢]
Eigenvectors: (0) N (1)

sy = (7 ) =m o= o) ap

Eigenvectors: 1 (1) N 1 (—lz)
6y = (}) fl) ;F|0>L<m —¢\§1> (1

3 (1) % ()

O] +11) (1]
(v)

(All have respective eigenvalues of +1 and -1)

Eigenvectors:

-G )

)
. ]
Eigenvectors: 1)

)

Commutaton Relations

(60, 6y] = 2i65 {62,64} =0

[6y,62] =2i6g Gy,62} =0

[62,60] = 2i6y {62,623} =0
[6a,5p] = 2ieqpede

For direction 7, 7 - & = ngég + ny(o)y + nzéz

For any operator,

Tensor Products

a

Given that |¢) = (b) and |¢) = (;)

c) ac
wy@is)y=| X | =32
d) bd

For operators,

2 5 _ [a b « B
aes=(t He(3 5)
a B a B
_[*\~ ) b ol S
- @ B @ B
(5 % a5 s
aa  aB ba b8
_|ay a8 by b5
=lca ¢8 da dB
cy cs d~y dés
Properties

Not commutative. Distributive:
1) ® (I6) + 1)) = |¥) ® |¢> gl ele
A®(B+C)=A@B+ A

Operators can act on one photon and not the

other: Eg, let
o 0o 1 o0
z _|0o o o 1
AT (1 0o o0 o
0 1 0 0
thus,

ol |HH) = o @ Z(|H) 4 ® |H)p)
= (04 |H)4) ® (Z|H)p)
=IVia®I|H)p
= |VH)

or
0o o 1 o0\ /1 0
o o o 1|fo]_|o
1 0 0 0 of — |1
0 1 0 0 0 0

Classical Cryptography

Criterion for Perfect Secrecy Let {p;} be the
set of possible plaintexts, and {c;} be the set of
P(p;|Cy) = P(p;)Vi,j
(discovering a ciphertext provides no information
about the plaintext)

possible ciphertexts.

Quantum Cryptography
Based on no-cloning theorem (cannot copy an
unknown quantum state)

BB84 (Quantum Key Distribution)

1. Alice sends a random sequence of bits,

randomly encoded in either H/V or +45/-45

basis, to Bob

Bob measures each qubit in a random basis

3. Alice and Bob compare bases used

4. Alice and Bob discard qubits measured in
different bases

5. Alice and Bob compare a subset of their
qubits to check for eavesdropping

6. Alice and Bob use the remaining qubits as a
shared key

7. Alice and Bob use the shared key to encrypt
and decrypt messages

N

Errors in the key indicate eavesdropping
(probability that Eve does not cause an error is

(3/4)N | where N is the number of qubits tested)

B92 Protocol

Non-orthogonal bases, eg |0),|1) and [0/),|1/)
Alice prepares states in |0) , |1’), associating
them with 0 and 1, and sends them to Bob.

Bob measures in the two basis randomly. If he
receives a |0), he discards it, as it could have
been prepared as |0) or |1’), but if he receives a
|1), he knows it was prepared as |1’). Same for
[0’y 11")
Advantages:
unconditionally secure in a lossless channel,
not make use of entanglement.

Only needs 2 states and 2 basis,
does

Ekert’s Entangled State Protocol

e |¥) ™ kets, keep qubit A, send b

e Generated key is anti-correlated, Bob flips his
measured result

Entanglement

Bell states

[ty = —— (HV) + [VEY)
V2
1
107 = ——(HV) = |VH)
|8 F) = ——(IHH) + [VV))
V2
1
127) = —(HH) = [VV))

U™ is isotropic (it remains the same no matter
which axes we choose to measure it along) By
decomposing it into 6 basis, we can show that

— 1 _
wl Z5UHY) — IVH)) =
50,0+ 7/2) =164 7/2,6))

Density matrix formalism

Density Operator: g = >, pn |[¥n) (¢¥nl

>2; p; = 1 We can treat this as a “sum of
probabilities”, where p; is the probability of a
given state |1;) appearing. The states for ipn
need not be orthogonal.

We can rewrite it as p = 3., Pm |P)m (Plm
Measurement / Expectation Value
Generalized Born Rule Measuring using a
Hermitian operator M = }3; m; |m;) (m;| results
in one of its eigenvalues m;. The probability of
obtaining a nondegenerate eigenvalue m; is
p(m;) = Tr[pll;], where Il; = |m),; (m|;. If
eigenvalues are degenerate, with value m, the
probability of finding that value is 3°; Tr[pIl;],
where the sum is over the values of i where

my
Measuring GHZ State To measure only the
first two qubits, measure all 3 qubits twice,
performing 2 measurements for the last qubit.
Purity: TT(;S2) =>m p?n is the purity of a
state Essentially how separable / correlated the
two states are.

= m.

Properties
If p is diagonal and more than a single diagonal
element is not 0, then it must be a mixed state.
Measurements reduce a quantum state to a
statistical mixture. Tr(]0) (0]) = Tr(|1) (1]) =1
Tr(]0) (1]) = Tr(]1) (0]) =0
Reduced density matrices
Given a state,

[YaB)
The density operator for this state can be
separated

pAB = lYaB) (bapl = 1Y) (bal®l¥B) (¥pl
And satisfies the equality Tr p?qB
coherent. Therefore,

= 1, since it is

Trprap =ra Trarap =rB
pA =1%a) (WAl pp=Iv¥R){(¢¥E]

Von Neumann entropy

S = —Tr(plnp) = — X; p; Inp; where pf* are

diagonal elements in p 4

EPR Paradox
s

ay Alice and Bob share state
—y — _1

=) = 510y = 11))

e If A is measured in Z, then B measures
opposite Z

e Same for X measurement on A
Predict either Z or X of qubit B by performing
one or the other on A.

e If our choice does not disturb B, then the
values for X and Z must exist simultaneously,
so there must be hidden variables

e TL;DR, believed there was a theory as correct
as QM that could deterministically predict
results of Bob’s measurements



Local Realism

Local realism is the idea that the properties of a
system are determined by the properties of the
system’s parts. AKA, no spooky action at a
distance.

Bell’s Inequality:

Front-panel explanation:

® Source sends out pairs of particles, each
appratus has buttons marked M, N, Alice and
Bob randomly measure in these states w/o
communication.

e Each apparatus displayes a readout depending
on results.

e Alice and Bob record their events.

o We assert that
X MAMBNANBP(My, Mp, Ng, Np) =1,
such that all 4 quantities have well-defined
values (say in a hidden variable), even though
only 2 of them are displayed. (Locality)

e From this, we assert that | <
MpaMp —MANp +NpMp +NyNp > | <2
if locality holds.

e However, each expectation value is actually
+1/V/2, leading to a final value of
< S >= —2v2.

e Contradiction!

Loop Holes

Locality loophole If Alice and Bob are close,
then information could be transmitted, and thus
measurements are no longer “local”

Detection loophole If one or more photons are
lost, then the situation is no longer consistent
with the “front panel” described. Taking into
account only the events that do occur doesn’t
refute local realism. e.g. a hidden variable that
decides if it should appear “invisible”, causing it
to not have values for M and N at the same time

GHZ State

GHZ State can also show non-locality:

e 3 observers, each with a Bell apparatus, but
buttons are for 65 and &y measurements.

e Source sends out 3 particles at a time

Note that whenever 2 are &y and 1 is 64,

result is -1.

e Local realism predicts that o, g0,

e However, o, 00,0, |IGHZ) = + |GHZ),
with an eigenvalue of 4+1. Contradiction.

CHSH Game:

‘We can construct a game to test Bell’s inequality.
Alice and Bob each have a bit, and they can
choose to measure it in one of two bases. They
win if the XOR of their bits is 0.

Using deterministic strategies, the maximum win
rate is 75%.

However, using entangled particles, we can
achieve a win rate of 85%, violating Bell’s
inequality.

= -1

Quantum Socks

o Generate [¢)

Quantum Dense Coding

e Start with shared qubit [¥ ™)

e Alice applies one of {I, 64,6y, 52} to just her
qubit, producing the following conversions:
IQINET)=|¥7) 6, QI|¥7) =—[27)

Gy @IIw™) =ileT) 6. @1 |v™) =|vh)
(we ignore global phases — and i

e Alice then sends single qubit to Bob

e Bob then measures in Bell-state basis, with a
CNOT with 1 as control and 2 as target, and a
Hadamard gate on 1. This maps |¥7) — |11),
|2F) = [o1), |27) — [10), |#F) — |00).

o Neither Bob nor Alice can recover the encoded
information alone, instead the information
resides in correlations between two qubits, and
is non-local.

Quantum Teleportation

Transfers unknown quantum state between 2
locations

e Uses classical communications channel

e Original state is destroyed

Procedure

e Input state of |[x) = a |H) + 8|V) in Hilbert
space V7

e Alice and Bob share entangled state |¥ ™)
Hilbert space Vo @ V3

o Alice measures in V7 ® Va space in the bell
basis

in

Quantum Algorithms
Deutsch-Joza Algorithm

Determine whether an unknown selection from 4
1-bit functions is constant or balanced.

Classical algorithm requires 2 evaluations for f(0)
and f(1)

Alice Prob Bob Op

ot 1/4 —B|H) +a|V) pzpz = ipy
> 1/4 BIH) + a|V) P

vt 1/4 —a |H) +B|V) Pz

v 1/4 —(a|H) +B1|V)) none

Quantum Repeater

e Entangle each link’s cells, not very likely to
succeed but each link can be retried until
connection is made

e Entangle link ends (that are very close and will
very likely succeed) to form final long link

Memry cell

a) Asingle
link

|
'

'

|

'
entangles |
twomemory |
'

'

|

b) After all the links have been prepared, entanglement swapping distributes the
entanglement through the links 0 that Alice and Bob at the two ends become
entangled

Quantum Gates

Properties
e Can only perform unitary operations
— Due to all quantum operations being
unitary, follows from Schrodinger’s equation
— If it were not unitary, we would be
discarding data which is a “measurement”
e Any controlled-unitary gate can be made from
CNOT and single qubit gates.

Necessary Conditions

o Well-defined, extendible qubit array that is
stable

e Ability to prepare qubit array in suitable
starting state, eg all |0)

e Good isolation from environment (long
coherence times)

e Ability to perform universal set of gate
operations (e.g. single-qubit rotations, CNOT
between any pair of qubits)

e Ability to perform close to ideal von Neumann
measurements on each of the qubits

Unitary

Unitary if Ata= I, where f represents conjugate
transform (Hermitian Conjugate).

Common Gates
Hadamard gate:
g 1 (L 1)
= (1 —1) B

operator: R(7,0) = e Where J is the

angular momentum operator, and
7i = (sin 6 cos ¢, sin 0 sin ¢, cos #) is a unit vector.

%(iz + o2) Rotation

—i07-

For spin-1/2, J = %

2-qubit Quantum Gates

[00) < [01) < |10) <

oo~ o
o~ oo

11) <

~ooo ocoor

Matrix is 4 by 4, selected column(s) can be
treated as “inputs”, row values in said column(s)

are “outputs”.

Quantum algorithm evaluates both £(0) and (1)
at the same time:

: %
vl

If £(0) = £(1) = +(0), else £(0) =

N qubit extension

+11) # f(1).

Classical has O(2V) time complexity, QM has
constant time (single Oracle use).

Circuit diagram for the Deutsch-Jozsa algorithm for the function f with N input qubits

Ninput
qubits

Joer)

[ vl

=1 13 )

Vinen acting on state (D) -I1 )
the X gate simply multiplies by -1

« a
= ’ eigenstate of X, The multiplication
= of the entire state by the

eigenvalue -1 is an example of

“phase kickback

where:

f-controlled X gate

If f is constant, amplitude is either +1 or -1, so
measurement must give all 0s. Otherwise, it will
not be all Os.

Bernstein-Vazirani Algorithm
Given a function f(z) =

Classically, we would need to do n queries, one
for each bit.

a -z, find a.

% 10y {A———e—{a— o ——{X—|»

% 10) (i} m— o ———1n

% 10) i} {i}— |0y |0

xi 10y —fii} 1 fil—= [0y I

%o o) —{H] i— o [0

v IW 4 l [
Figuro 8 ; Sundwiching the cirauit for U in Fg A anuu:unm and realizing that the
effect of the he CNOT (control-X) gates,
e immediniely it the e st of th upper it sgiir emtio .= 1101,

Using QM, we can get the positisons in a that are
1 using one query.

Simon’s Algorithm

Given a black-box function that has the property
f(z ®a) = f(x), find a. Since z ®a B a = =,
f(z) = f(z @ a) = f(z ® a® a), therefore f(x) is
periodic with period a under bitwise mod 2
addition.

Classically, we evaluate functions on different
inputs until we find a repetition, and then

For a good chance of
so

compare m(m — 1)/2 pairs.
success, number of pairs must be close to 27,
m is to the order of 27/2.

¥ [V ¥ ¥
A e

| Up
10), A

Using the multiple measurements performed at y,
the bit indicies with 1s form a linear equation,
that equal 0. Combining multiple of these
measurements, we can build a valid solution.

L.00

0.75

13
]
2 0.50
0.25
0.00
Yo' S 285 8585 § § 5
y0 ~sssss:§§ass
£ §§ 8§85 FFSSELA
e.g. in this case, a3 = 0, a2 + a4 = 0,

a2 + a4 + a5 = 0... and we find that a = 010101.

Shor’s Algorithm
Given an integer N, what are its prime factors?
Classical algorithm: “General number field sieve”,
runs in exponential time w.r.t. input length.
Theory
e Let N be the product of two prime numbers p
and q. Thus, the sequence m mod N, m?
mod N, m3 mod N, ... will repeat with a
period that is a perfect divisor of (p — 1)(q — 1)
e Use Quantum Fourier Transform to find the
period of this sequence
Algorithm
1. Pick a random integer a with no common
factors with N.

2 44

om
2. Calculate a,a“, a L, a

2™ > N2

(mod N), where

3. Perform modular exponentiation for all z,
akaa® =17 *1(a2j Y®J (algorithm below
up to ¥q)

4. QFT to extract the period of probabilities

from upper register
5. If successful, we find y within 1/2 of 2™ m/r,
and thus |y/2"™ — m/r| < 1/27F1,
Thus, m /7 is one of partial sums of continued
fraction expansion of y/2"™

Coherent Superposition

e Must be a well-defined phase between pieces in
superposition

® e.g. there can eventually be interference
between pieces

e If the phase is random, no interference exists,
and we return to classical addition of
probabilities

e Coherent sum of amplitudes: 1/2]|a + 8|2

e Incoherent average over probabilities:

1/2(la)? + 1812)

Quantum Error Correction

detection

Jo0d) + [111)

)+ B 111

Measurement of Ancilla identifies and collapses
the error, and applying the appropriate operator
corrects the error.

Stabilizers

e Square to 1 (so eigenvalues are +1)
e Mutually commute, so have same eigenstates
e Syndromes are eigenstates

Uncorrupted syndrome has eigenvalue +1 for
all stabilizers

Set of +1 eigenvalues of stabilizers uniquely
specifies syndrome

Phase Flip Errors

Given errors of the type

[¢) = a0) +B1) = a]0) = B|1)
e Correct by transforming to +- basis of X
operator
e Use Hadamard: H |0) = |+),H 1) = |—)
H|+) =10),H|—) = |1) (Role of X and Z are
interchanged)
aloy +81) .
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