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General
sin2 θ + cos2 θ = 1 2 sin θ = 2 sin θ cos θ

2 cos θ = cos2 θ − sin2 θ
logb(x) = logc(x)/ logc(b)

Linalg

Matrix Multiplication:
(
a b

)
·
(
c
d

)
=

(
ac + bd

)
(
a
b

)
·
(
c d

)
=

(
ac ad
bd bd

)
(
a b
c d

)(
e f
g h

)
=

(
ae + bg af + bh
ce + dg cf + dh

)
Diagonalization Given X, det |X − λI| = 0,
solve for values of λ (eigenvalues) Xv = λv
(substitute in λ, solve for v (eigenvector))

Determinant

(
a b
c d

)
= ad − cba b c

d e f
g h i

 =

aDet(e, h, f, i)−bDet(d, g, f, i)+cDet(d, g, e, h)

Adjoint (Hermitian Conjugate): A† = A∗
(transpose the matrix and take the complex
conjugate of each element)

Complex Conjugate: Flip the sign of the
imaginary part of a complex number

Trace Sum the diagonal elements of a square
matrix

Partial Trace Partial trace for B:
TrBρAB ≡ |ψ⟩A ⟨ψ|A Tr(|ψ⟩B ⟨ψ|A)

Multi-bit Dirac Notation |A⟩ |B⟩ = |AB⟩ The
dual of this is ⟨BA|
Properties |A⟩ ⟨A| = Î

Probability and Bayes’ Rule
Bayes’ theorem formula:

P (A|B) =
P (B|A)P (A)

P (B)

Examples of calculating conditional probabilities
(medical tests, particle detectors)

Poisson distribution:

P (n) =
λne−λ

n!

Classical Information Theory

Shannon Entropy/Information
H = −k

∑
i p(ai) log p(ai) By convention, we use

k = 1 and log is base 2.

Properties of entropy

Entropy must be non-negative, and is maximized
for a uniform distribution.

Thermodynamics
Gibbs Entropy: S = −k

∑
pi log pi

Communication Theory

Number of Typical Messages W ≃ 2NH(p)

where H(p) is the entropy of the message and N
is the number of bits in the message.

Compression
factor for different values of p. As p approaches
0.5 from either side, we can compress the message
less and less, since there is more entropy we need
to encode.

Shannon’s Noiseless Coding
Theorem:

For a given message, we only need NH(p) bits to
encode it (definition of H(p) above)

Example: Let us have an alphabet A, B, C, D
with probabilities of 1/2, 1/4, 1/8, 1/8
respectively. Entropy is
H = −(1/2 log 1/2 + 1/4 log 1/4 . . . ) = 7/4 bits
Therefore, a message N characters long can be
encoded in 7/4 · N bits.

Shannon’s Noisy Coding Theorem:

On average, we need at least
N0

1−H(q)
bits to

encode one of 2N0 equally probable messages
(N0 is the original message length) where
H(q) = −[q log q + (1 − q) log(1 − q)] is the
entropy associated with single bit error q.

Efficient Coding: Plot N/N0 − 1 vs q to see
when overhead becomes too “large”

Huffman Coding

1. Sort the probabilities
2. Combine the two lowest probabilities into a

tree, storing characters as branches and the
sum of their probabilities as the root

3. Repeat until all probabilities are combined,
and we reach a probability of 1

4. Set 0/1 to left/right (either pairing), and
traverse the tree to find the encoding

Dirac Notation
⟨Ψ| ⇐⇒ |ψ⟩†

Ket Matrix

|0⟩ or |H⟩
[
1
0

]
|1⟩ or |V ⟩

[
0
1

]
Diagonal Up 1√

2

[
1
1

]
Diagonal Down 1√

2

[
1

−1

]
Left Circular 1√

2

[
1
i

]
Right Circular 1√

2

[
1
−i

]
θ

[
cos θ
sin θ

]
π/2 + θ

[
− sin θ
cos θ

]

|Ψ⟩ = cos θ
2

|0⟩ + eiϕ sin θ
2

|1⟩
+x = 1√

2
(|0⟩ + |1⟩)

−x = 1√
2
(|0⟩ − |1⟩)

+y = 1√
2
(|0⟩ + i |1⟩)

−y = 1√
2
(|0⟩ − i |1⟩)

Change of basis

Let θ be a rotation of basis vectors,
counterclockwise.

|x⟩ = cos θ |x′⟩ − sin θ |y′⟩ and

|y⟩ = sin θ |x′⟩ + cos θ |y′⟩

where |x′⟩ and |y′⟩ are the new basis vectors.

Outer Product

Given that |ψ⟩ = |ψ⟩ ⟨ϕ| =

[
ψ1ϕ1 ψ1ϕ2
ψ2ϕ1 ψ2ϕ2

]

Quantum State Tomography
• Set a set of observables to uniquely determine

a state. For a single qubit, we can use the
Pauli operators.

• Prepare many copies of the state
• Measure the observables in states

{H, V }, {+45,−45}, {LCP,RCP}
• Decompose state as |ψ⟩ = rH |H⟩ + rV e

iϕ |V ⟩
where ϕ = ϕV − ϕH

• Procedure
1. Perform measurement in {H, V} basis -

Probability of detecting H is r2H , so

rH =
√
PrH, rv =

√
1 − PrH

2. cosϕ =
Pr+45−1/2√

(1−PrH )(PrH )

3. sinϕ =
1/2−PrRCP√
(1−PrH )(PrH )

Operators
Operators produce another ket

Spectral Decomposition

Operator A can be decomposed
Â =

∑
i ai |ai⟩ ⟨ai|

Observable

Is an operator, likely one of the Pauli operators.
The measured results when observing in this
“direction” will be one of its eigenvalues.

Mean value of an observable Measuring an
observable V̂ =

∑
i vi |vi⟩ ⟨vi| in the state |Ψ⟩

Obtains result vi with probability

p(vi) = | ⟨vi|Ψ⟩ |2

Repeating measurement many times obtains
expectation value

⟨V ⟩ =
∑
i Pivi =

∑
i | ⟨vi|Ψ⟩ |2vi

⟨V ⟩Ψ = ⟨Ψ|V̂ |Ψ⟩

Uncertainty

Variance is ∆V 2 = ⟨Ψ|(V̂ − ⟨Ψ|V̂ |Ψ⟩)2|Ψ⟩
∆V 2 = ⟨Ψ|V̂ 2|Ψ⟩ − ⟨Ψ|V̂ |Ψ⟩2 = ⟨V̂ 2⟩ − ⟨V̂ ⟩2

Heisenberg Uncertainty Principle

∆x∆p ≥ 1
2
| ⟨ψ|[Â, B̂]|ψ⟩ | (e.g. for [x̂, p̂] = iℏ we

find ∆x∆p ≥ ℏ
2
)

Pauli Operators

σ̂x =

(
0 1
1 0

)
= |0⟩ ⟨1| + |1⟩ ⟨0|

Eigenvectors:

(
1
0

)
,

(
0
1

)
σ̂y =

(
0 −i
i 0

)
= i(|1⟩ ⟨0| − |0⟩ ⟨1|)

Eigenvectors: 1√
2

(
1
i

)
, 1√

2

(
1
−i

)
σ̂z =

(
1 0
0 −1

)
= |0⟩ ⟨0| − |1⟩ ⟨1|

Eigenvectors: 1√
2

(
1
1

)
, 1√

2

(
1

−1

)
Î =

(
1 0
0 1

)
= |0⟩ ⟨0| + |1⟩ ⟨1|

Eigenvectors:

(
0
1

)
,

(
1
0

)
(All have respective eigenvalues of +1 and -1)

Commutaton Relations

[σ̂x, σ̂y ] = 2iσ̂z

[σ̂y, σ̂z ] = 2iσ̂x

[σ̂z, σ̂x] = 2iσ̂y

{σ̂x, σ̂y} = 0

{σ̂y, σ̂z} = 0

{σ̂z, σ̂x} = 0

[σ̂a, σ̂b] = 2iϵabcσ̂c

For direction n⃗, n⃗ · ⃗̂σ = nxσ̂x + ny (̂σ)y + nzσ̂z

For any operator,

Ĥ =

(
a c − id

c + id b

)

=
a + b

2
Î +

a − b

2
σ̂z + cσ̂x + dσ̂y

Tensor Products
Given that |ψ⟩ =

(
a
b

)
and |ϕ⟩ =

(
c
d

)

|ψ⟩ ⊗ |ϕ⟩ =

a
(
c
d

)
b

(
c
d

)
 =


ac
ad
bc
bd


For operators,

Â ⊗ B̂ =

(
a b
c d

)
⊗

(
α β
γ δ

)

=

a
(
α β
γ δ

)
b

(
α β
γ δ

)
c

(
α β
γ δ

)
d

(
α β
γ δ

)


=


aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ


Properties
Not commutative. Distributive:
|ψ⟩ ⊗ (|ϕ⟩ + |φ⟩) = |ψ⟩ ⊗ |ϕ⟩ + |ψ⟩ ⊗ |φ⟩
Â ⊗ (B̂ + Ĉ) = Â ⊗ B̂ + Â ⊗ Ĉ
Operators can act on one photon and not the
other: Eg, let

σ
x
A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


thus,

σ
x
A |HH⟩ = σ

x
A ⊗ I(|H⟩A ⊗ |H⟩B)

= (σ
x
A |H⟩A) ⊗ (I |H⟩B)

= |V ⟩A ⊗ |H⟩B
= |VH⟩

or 
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1
0
0
0

 =


0
0
1
0


Classical Cryptography
Criterion for Perfect Secrecy Let {pi} be the
set of possible plaintexts, and {cj} be the set of

possible ciphertexts. P (pi|Cj) = P (pi)∀i, j
(discovering a ciphertext provides no information
about the plaintext)

Quantum Cryptography
Based on no-cloning theorem (cannot copy an
unknown quantum state)

BB84 (Quantum Key Distribution)
1. Alice sends a random sequence of bits,

randomly encoded in either H/V or +45/-45
basis, to Bob

2. Bob measures each qubit in a random basis
3. Alice and Bob compare bases used
4. Alice and Bob discard qubits measured in

different bases
5. Alice and Bob compare a subset of their

qubits to check for eavesdropping
6. Alice and Bob use the remaining qubits as a

shared key
7. Alice and Bob use the shared key to encrypt

and decrypt messages

Errors in the key indicate eavesdropping
(probability that Eve does not cause an error is

(3/4)N , where N is the number of qubits tested)

B92 Protocol
Non-orthogonal bases, eg |0⟩ , |1⟩ and |0′⟩ , |1′⟩
Alice prepares states in |0⟩ , |1′⟩, associating
them with 0 and 1, and sends them to Bob.
Bob measures in the two basis randomly. If he
receives a |0⟩, he discards it, as it could have

been prepared as |0⟩ or |1′⟩, but if he receives a

|1⟩, he knows it was prepared as |1′⟩. Same for

|0′⟩ , |1′⟩
Advantages: Only needs 2 states and 2 basis,
unconditionally secure in a lossless channel, does
not make use of entanglement.

Ekert’s Entangled State Protocol

• |Ψ⟩− kets, keep qubit A, send b
• Generated key is anti-correlated, Bob flips his

measured result

Entanglement
Bell states

|Ψ+⟩ =
1

√
2
(|HV ⟩ + |VH⟩)

|Ψ−⟩ =
1

√
2
(|HV ⟩ − |VH⟩)

|Φ+⟩ =
1

√
2
(|HH⟩ + |V V ⟩)

|Φ−⟩ =
1

√
2
(|HH⟩ − |V V ⟩)

Ψ− is isotropic (it remains the same no matter
which axes we choose to measure it along) By
decomposing it into θ basis, we can show that

Ψ− = 1√
2
(|HV ⟩ − |VH⟩) =

1√
2
(|θ, θ + π/2⟩ − |θ + π/2, θ⟩)

Density matrix formalism
Density Operator: ρ̂ =

∑
n pn |ψn⟩ ⟨ψn|∑

i pi = 1 We can treat this as a “sum of
probabilities”, where pi is the probability of a
given state |ψi⟩ appearing. The states for ψn
need not be orthogonal.
We can rewrite it as ρ̂ =

∑
m pm |p⟩m ⟨p|m

Measurement / Expectation Value /
Generalized Born Rule Measuring using a
Hermitian operator M =

∑
i mi |mi⟩ ⟨mi| results

in one of its eigenvalues mi. The probability of
obtaining a nondegenerate eigenvalue mi is
p(mi) = Tr[ρΠi], where Πi ≡ |m⟩i ⟨m|i. If
eigenvalues are degenerate, with value m, the
probability of finding that value is

∑
i Tr[ρΠi],

where the sum is over the values of i where
mi = m.
Measuring GHZ State To measure only the
first two qubits, measure all 3 qubits twice,
performing 2 measurements for the last qubit.

Purity: Tr(ρ̂2) =
∑
m ρ2m is the purity of a

state Essentially how separable / correlated the
two states are.

Properties

If ρ̂ is diagonal and more than a single diagonal
element is not 0, then it must be a mixed state.
Measurements reduce a quantum state to a
statistical mixture. Tr(|0⟩ ⟨0|) = Tr(|1⟩ ⟨1|) = 1
Tr(|0⟩ ⟨1|) = Tr(|1⟩ ⟨0|) = 0

Reduced density matrices
Given a state,

|ψAB⟩
The density operator for this state can be
separated

ρAB = |ψAB⟩ ⟨ψAB | = |ψA⟩ ⟨ψA| ⊗ |ψB⟩ ⟨ψB |

And satisfies the equality Tr ρ2AB = 1, since it is
coherent. Therefore,

TrB ρAB = ρA TrA ρAB = ρB

ρA = |ψA⟩ ⟨ψA| ρB = |ψB⟩ ⟨ψB |

Von Neumann entropy

S = −Tr(ρ ln ρ) = −
∑
i pi ln pi where pAi are

diagonal elements in ρA

EPR Paradox
Say Alice and Bob share state

|Ψ−⟩ = 1√
2
(|0⟩ − |1⟩)

• If A is measured in Z, then B measures
opposite Z

• Same for X measurement on A
• Predict either Z or X of qubit B by performing

one or the other on A.
• If our choice does not disturb B, then the

values for X and Z must exist simultaneously,
so there must be hidden variables

• TL;DR, believed there was a theory as correct
as QM that could deterministically predict
results of Bob’s measurements

1



Local Realism

Local realism is the idea that the properties of a
system are determined by the properties of the
system’s parts. AKA, no spooky action at a
distance.

Bell’s Inequality:

Front-panel explanation:

• Source sends out pairs of particles, each
appratus has buttons marked M, N, Alice and
Bob randomly measure in these states w/o
communication.

• Each apparatus displayes a readout depending
on results.

• Alice and Bob record their events.
• We assert that∑

MAMBNANBP (MA,MB,NA,NB) = 1,
such that all 4 quantities have well-defined
values (say in a hidden variable), even though
only 2 of them are displayed. (Locality)

• From this, we assert that | <
MAMB −MANB +NAMB +NANB > | ≤ 2
if locality holds.

• However, each expectation value is actually
±1/

√
2, leading to a final value of

< S >= −2
√

2.
• Contradiction!

Loop Holes

Locality loophole If Alice and Bob are close,
then information could be transmitted, and thus
measurements are no longer “local”

Detection loophole If one or more photons are
lost, then the situation is no longer consistent
with the “front panel” described. Taking into
account only the events that do occur doesn’t
refute local realism. e.g. a hidden variable that
decides if it should appear “invisible”, causing it
to not have values for M and N at the same time

GHZ State

GHZ State can also show non-locality:

• 3 observers, each with a Bell apparatus, but
buttons are for σ̂x and σ̂y measurements.

• Source sends out 3 particles at a time
• Note that whenever 2 are σ̂y and 1 is σ̂x,

result is -1.
• Local realism predicts that σxAσxBσxC = −1
• However, σxAσxBσxC |GHZ⟩ = + |GHZ⟩,

with an eigenvalue of +1. Contradiction.

CHSH Game:

We can construct a game to test Bell’s inequality.
Alice and Bob each have a bit, and they can
choose to measure it in one of two bases. They
win if the XOR of their bits is 0.

Using deterministic strategies, the maximum win
rate is 75%.

However, using entangled particles, we can
achieve a win rate of 85%, violating Bell’s
inequality.

Quantum Socks

• Generate |ψ⟩−

Quantum Dense Coding
• Start with shared qubit |Ψ−⟩
• Alice applies one of {Î, σ̂x, σ̂y, σ̂z} to just her

qubit, producing the following conversions:

Î ⊗ Î |Ψ−⟩ = |Ψ−⟩ σ̂x ⊗ Î |Ψ−⟩ = − |Φ−⟩
σ̂y ⊗ Î |Ψ−⟩ = i |Φ+⟩ σ̂z ⊗ Î |Ψ−⟩ = |Ψ+⟩
(we ignore global phases − and i)

• Alice then sends single qubit to Bob
• Bob then measures in Bell-state basis, with a

CNOT with 1 as control and 2 as target, and a

Hadamard gate on 1. This maps |Ψ−⟩ → |11⟩,
|Ψ+⟩ → |01⟩, |Φ−⟩ → |10⟩, |Φ+⟩ → |00⟩.

• Neither Bob nor Alice can recover the encoded
information alone, instead the information
resides in correlations between two qubits, and
is non-local.

Quantum Teleportation
• Transfers unknown quantum state between 2

locations
• Uses classical communications channel
• Original state is destroyed

Procedure
• Input state of |χ⟩ = α |H⟩ + β |V ⟩ in Hilbert

space V1

• Alice and Bob share entangled state |Ψ−⟩ in
Hilbert space V2 ⊗ V3

• Alice measures in V1 ⊗ V2 space in the bell
basis

Alice Prob Bob Op

Φ+ 1/4 −β |H⟩ + α |V ⟩ ρzρx = iρy

Φ− 1/4 β |H⟩ + α |V ⟩ ρx
Ψ+ 1/4 −α |H⟩ + β |V ⟩ ρz
Ψ− 1/4 −(α |H⟩ + β |V ⟩) none

Quantum Repeater
• Entangle each link’s cells, not very likely to

succeed but each link can be retried until
connection is made

• Entangle link ends (that are very close and will
very likely succeed) to form final long link

Quantum Gates

Properties
• Can only perform unitary operations

– Due to all quantum operations being
unitary, follows from Schrodinger’s equation

– If it were not unitary, we would be
discarding data which is a “measurement”

• Any controlled-unitary gate can be made from
CNOT and single qubit gates.

Necessary Conditions
• Well-defined, extendible qubit array that is

stable
• Ability to prepare qubit array in suitable

starting state, eg all |0⟩
• Good isolation from environment (long

coherence times)
• Ability to perform universal set of gate

operations (e.g. single-qubit rotations, CNOT
between any pair of qubits)

• Ability to perform close to ideal von Neumann
measurements on each of the qubits

Unitary

Unitary if A†A = I, where † represents conjugate
transform (Hermitian Conjugate).

Common Gates
Hadamard gate:

Ĥ = 1√
2

(
1 1
1 −1

)
= 1√

2
(σ̂z + σ̂x) Rotation

operator: R̂(n⃗, θ) = e−iθn⃗· ⃗̂J Where
⃗̂
J is the

angular momentum operator, and
n⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector.

For spin-1/2,
⃗̂
J = 1

2
⃗̂σ

2-qubit Quantum Gates

|00⟩ ⇔


1
0
0
0

 |01⟩ ⇔


0
1
0
0

 |10⟩ ⇔


0
0
1
0


|11⟩ ⇔


0
0
0
1


Matrix is 4 by 4, selected column(s) can be
treated as “inputs”, row values in said column(s)
are “outputs”.

Quantum Algorithms

Deutsch-Joza Algorithm
Determine whether an unknown selection from 4
1-bit functions is constant or balanced.

Classical algorithm requires 2 evaluations for f(0)
and f(1)

Quantum algorithm evaluates both f(0) and f(1)
at the same time:

If f(0) = f(1) = ± |0⟩, else f(0) = ± |1⟩ ̸= f(1).

N qubit extension

Classical has O(2N ) time complexity, QM has
constant time (single Oracle use).

If f is constant, amplitude is either +1 or -1, so
measurement must give all 0s. Otherwise, it will
not be all 0s.

Bernstein-Vazirani Algorithm
Given a function f(x) = a · x, find a.

Classically, we would need to do n queries, one
for each bit.

Using QM, we can get the positisons in a that are
1 using one query.

Simon’s Algorithm
Given a black-box function that has the property
f(x ⊕ a) = f(x), find a. Since x ⊕ a ⊕ a = x,
f(x) = f(x ⊕ a) = f(x ⊕ a ⊕ a), therefore f(x) is
periodic with period a under bitwise mod 2
addition.

Classically, we evaluate functions on different
inputs until we find a repetition, and then
compare m(m − 1)/2 pairs. For a good chance of
success, number of pairs must be close to 2n, so

m is to the order of 2n/2.

Using the multiple measurements performed at y,
the bit indicies with 1s form a linear equation,
that equal 0. Combining multiple of these
measurements, we can build a valid solution.

e.g. in this case, a3 = 0, a2 + a4 = 0,
a2 + a4 + a5 = 0... and we find that a = 010101.

Shor’s Algorithm
Given an integer N, what are its prime factors?

Classical algorithm: “General number field sieve”,
runs in exponential time w.r.t. input length.

Theory

• Let N be the product of two prime numbers p

and q. Thus, the sequence m mod N,m2

mod N,m3 mod N, . . . will repeat with a
period that is a perfect divisor of (p− 1)(q− 1)

• Use Quantum Fourier Transform to find the
period of this sequence

Algorithm

1. Pick a random integer a with no common
factors with N.

2. Calculate a, a2, a4 . . . , a2
n

(mod N), where

2n > N2

3. Perform modular exponentiation for all x,

a.k.a ax =
∏n−1
j=0

(a2
j
)
xj (algorithm below

up to Ψ1)
4. QFT to extract the period of probabilities

from upper register
5. If successful, we find y within 1/2 of 2nm/r,

and thus |y/2n −m/r| < 1/2n+1.
6. Thus, m/r is one of partial sums of continued

fraction expansion of y/2n

Coherent Superposition
• Must be a well-defined phase between pieces in

superposition
• e.g. there can eventually be interference

between pieces
• If the phase is random, no interference exists,

and we return to classical addition of
probabilities

• Coherent sum of amplitudes: 1/2|α + β|2
• Incoherent average over probabilities:

1/2(|α|2 + |β|2)

Quantum Error Correction

Measurement of Ancilla identifies and collapses
the error, and applying the appropriate operator
corrects the error.

Stabilizers
• Square to 1 (so eigenvalues are ±1)
• Mutually commute, so have same eigenstates
• Syndromes are eigenstates

• Uncorrupted syndrome has eigenvalue +1 for
all stabilizers

• Set of ±1 eigenvalues of stabilizers uniquely
specifies syndrome

Phase Flip Errors
Given errors of the type
|ψ⟩ = α |0⟩ + β |1⟩ → α |0⟩ − β |1⟩
• Correct by transforming to +- basis of X

operator
• Use Hadamard: H |0⟩ = |+⟩ , H |1⟩ = |−⟩
H |+⟩ = |0⟩ , H |−⟩ = |1⟩ (Role of X and Z are
interchanged)
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