Linalg

Matrix Multiplication:

a b e f\ _ (ae+ bg af + bh
c d)\g n)=\cetdg cf+dn
Adjoint (Hermitian Conjugate): AT = a*

(transpose the matrix and take the complex
conjugate of each element)

Complex Conjugate: Flip the sign of the
imaginary part of a complex number

Trace Sum the diagonal elements of a square
matrix

Multi-bit Dirac Notation |A) |B) = |AB) The
dual of this is (BA|

Properties |A) (A| =1

Probability and Bayes’ Rule

Bayes’ theorem formula:

P(B|A)P(A)
P(B)

P(A|B) =

Examples of calculating conditional probabilities
(medical tests, particle detectors)
Poisson distribution:
AT e
P(n) =
n!

Classical Information Theory

Shannon Entropy/Information

H = —kY¥,; p(a;)log p(a;) By convention, we use
k = 1 and log is base 2.

Properties of entropy

Entropy must be non-negative, and is maximized
for a uniform distribution.

Thermodynamics
Gibbs Entropy: S = —k Y p; logp;

Communication Theory

Number of Typical Messages W =~ ZNH(T’)
where H(p) is the entropy of the message and N
is the number of bits in the message.

A

Compression

fd(_tor for dlffLrL)]t values of p. As p approaches

5 from either side, we can compress the message
les:; and less, since there is more entropy we need
to encode.

Shannon’s Noiseless Coding
Theorem:

For a given message, we only need N H(p) bits to
encode it (definition of H(p) above)

Example: Let us have an alphabet A, B, C, D
with probabilities of 1/2,1/4,1/8,1/8
respectively. Entropy is

H=—(1/2log1/2 + 1/4log1/4...) = 7/4 bits
Therefore, a message N characters long can be
encoded in 7/4 - N bits.

Shannon’s Noisy Coding Theorem:

On average, we need at least bits to

No
1—-H(q)
encode one of 2IV0 equally probable messages
(Ng is the original message length) where
H(q) = —[qlogq + (1 — q)log(1l — q)] is the
entropy associated with single bit error q.
Efficient Coding: Plot N/Ng — 1 vs g to see
when overhead becomes too “large”

Huffman Coding

1. Sort the probabilities

2. Combine the two lowest probabilities into a
tree, storing characters as branches and the
sum of their probabilities as the root

3. Repeat until all probabilities are combined,

and we reach a probability of 1
4. Set 0/1 to left/right (either pairing), and

traverse the tree to find the encoding

Dirac Notation

(U] == )T

Ket Matrix
0y or |H) B
1) or |V) 9

Diagonal Up
Diagonal Down
Left Circular

Right Circular

O
11)

|T) = cos § [0) + et sin & |1)

_ 21 i
+z = f(\0)+\1>) +y = \/1§(I0)+ 1))
%(\0)*|1)) *y:ﬁ(lfl)*l\l))

Change of basis Let 6 be a
vectors, counterclockwise.

rotation of basis

|@) = cos 6 |z’) — sin 6 |y’) and
ly) = sin 6 |z’) + cos @ |y’)

where |z’) and |y’) are the new basis vectors.

Outer Product Given that [¢) =

_ (Y101 Y1é2
lv) (ol = [w2¢1 P22

Quantum State Tomography

® Set a set of observables to uniquely determine
a state. For a single qubit, we can use the
Pauli operators.

e Prepare many copies of the state

Measure the observables and use probability

and regression to reconstruct the state

Operators

Operators produce another ket

Mean value of an observable Measuring an

observable V = 3, v; |v;) (v;| in the state |¥)

Obtains result v; with probability
p(vy) = | (vy ) |2

Repeating measurement many times obtains
expectation value

(V) = 54 Pivg = 4 | (vi19) |20
(V)g = (2|V|P)

Uncertainty

Variance is AV2 = (U|(V — (¥|V|0))2|w)
Av2 = (9|V2|w) — (v |VIw)2 = (V2) — (V)2

Heisenberg Uncertainty Principle

Azap > S (P4, Bllp) | (eg. for [#
find Azap > &)

, Pl = ih we
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Pauli Operators
. 0o 1
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. 1
Eigenvectors: (0) B
(0 =i\ _
v = \4 o)~
Eigenvectors: — (1)
C 5
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gz =g

= 10) (1] + |1 (0]
0
()

i(11) (0] — 10) (1)
L (1
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Bigenvectors: G) , % (_11)
i=(5 ) =10 0+mal

. 0 1
Eigenvectors: (1) N (0)

(All have respective eigenvalues of +1 and -1)

Commutaton Relations

[6a,6y] = 2062 G4, 6y} =0
[6y,62] = 2i64 6y, 62} =
[5zv5m]:2i5y {62,622} =
[6a,6p] = 2'i5abuécﬂ .
For direction i, @i - & = ngég + ny(o)y + nz6z

For any operator,

o a c — id
H=(c+id b )
a+b_ a —
=27 62+ coy + doy
2

Common Gates
Hadamard gate:

It 1 (1 1) _

vzl )T
operator: R(7,0) = e~ 07 J \Where J is the
angular momentum operator, and

o> + o) Rotation

=

For spin-1/2, J =

Tensor Products
Given that [1) = (‘;) and |¢) = (2)

a(c ac
wels)=| »X|=[3
b(d bd

For operators,

ion_(a b a B
t0s-( ols 9
a B a B
[\~ ) b el s
- a B a B
c ~ 5 d 5 5
ac af ba b3
_ | av ad by bs
T | ca cB do dap
cy cs d~ dé

Properties
Not commutative. Distributive:

1) ® (I9) + 1v)) = 1¥) ® \45) + %) ® l¢)

AR (B+C)=AQ® B+
Operators can act on one photon and not the
other: Eg, let
0o 0o 1 o0
z _ (o o o 1
AT l1 0o o0 o
0O 1 0 o
thus,
cQ |HH) = 03 ® Z(|H) 4 ® |H)B)

(04 |H) 4) ® (Z|H) )
Vg ® |H)p
|VH)

(sin 6 cos ¢, sin 0 sin ¢, cos §) is a unit vector.

o~oo
—ooo
coor
co~=o
coowr
oroo

Classical Cryptography

Criterion for Perfect Secrecy Let {p;} be the
set of possible plaintexts, and {c]'} be the set of
P(p;|Cj) = P(p;y)Vi,j
(discovering a ciphertext provides no information
about the plaintext)

possible ciphertexts.

Quantum Cryptography

Based on no-cloning theorem (cannot copy an
unknown quantum state)

BB84 (Quantum Key Distribution)

Alice sends a random sequence of bits,

randomly encoded in either H/V or 445/-45

basis, to Bob

Bob measures each qubit in a random basis

3. Alice and Bob compare bases used

4. Alice and Bob discard qubits measured in

different bases

Alice and Bob compare a subset of their

qubits to check for eavesdropping

6. Alice and Bob use the remaining qubits as a
shared key

7. Alice and Bob use the shared key to encrypt
and decrypt messages

0N

@

Errors in the key indicate eavesdropping
(probability that Eve does not cause an error is
/o
B92 Protocol

Non-orthogonal bases, eg |0),|1) and |0/, |1/)
Alice prepares states in |0) , |1’), associating
them with 0 and 1, and sends them to Bob.

Bob measures in the two basis randomly. If he
receives a |0), he discards it, as it could have
been prepared as |0) or |1’), but if he receives a
|1), he knows it was prepared as |1’). Same for
[0’y 11")

Advantages: Only needs 2 states and 2 basis,

unconditionally secure in a lossless channel, does
not make use of entanglement.

, where N is the number of qubits tested)

Entanglement
Bell states

[y = (V) + [VH))
vz
1
97y = ——(HV) = V)
[8F) = — ((HH) + |VV))
vz
1
127) = —(HH) = |VV))

W™ is isotropic (it remains the same no matter
which axes we choose to measure it along) By
decomposing it into 6 basis, we can show that

- 1 —
‘1’1 W(IH\U*\VH))f
%(|979+7\'/2> — 164 7/2,6))

Examples of entangled states ([¢ 7))
ir: -y =1 —
EPR Pair: [v7) = 25 (j01) - |10))

GHZ State: [¢ 7 ) = k(\ooo) —J111))
W State: [¢ ) = %(\om) +1010) + |100))

Density matrix formalism

Density Operator: Represents a mixture of
states p = 3, pn [dn) (dnl

Expectation Value: (A) = Tr(pA)

Purity: Tr(p?) = 3, p2, is the purity of a
state Essentially how separable / correlated the
two states are.

Reduced density matrices
For a two-bit state that can be factored,

lvaB) = Ya) ®I¥R)

We can use the reduced density matrix to
describe the state of one of the qubits.
Trppap = 1YA) (YalTrivp) (vpl =
[Ya){(Yal =

Von Neumann entropy

S =-—Tr(plogpn = —>; pf npft =
—ila;12nla;12 #0) and Sy = Sp
(Characterizes how strongly A and B are
entangled)

Local Measurements:

Generalized Born Rule: We can extend the
Born rule to density matrices:

p(a) = Tr(plla)

Where Tl is the projector onto the eigenspace of
A with eigenvalue a, e.g. Ilqg = Y, |a;) (a;|

Bell’s Inequalities

Local Realism

Local realism is the idea that the properties of a
system are determined by the properties of the
system’s parts. AKA, no spooky action at a
distance.

Bell’s Inequality: For any local hidden variable
theory, the following inequality holds:

| < MAMpB—MANB+NAMpB+NyNg > | <2

Where My, Mpg, Ny, Ng are the results of
measurements on two entangled particles.

HSH Game: We can construct a game to test
Bell’s inequality. Alice and Bob each have a bit,
and they can choose to measure it in one of two
bases. They win if the XOR of their bits is 0.
Using deterministic strategies, the maximum win
rate is 75%.

However, using entangled particles, we can
achieve a win rate of 85%, violating Bell’s
inequality.
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