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Linalg
Matrix Multiplication:(
a b
c d

)(
e f
g h

)
=

(
ae + bg af + bh
ce + dg cf + dh

)
Adjoint (Hermitian Conjugate): A† = A∗
(transpose the matrix and take the complex
conjugate of each element)
Complex Conjugate: Flip the sign of the
imaginary part of a complex number
Trace Sum the diagonal elements of a square
matrix
Multi-bit Dirac Notation |A⟩ |B⟩ = |AB⟩ The
dual of this is ⟨BA|
Properties |A⟩ ⟨A| = Î

Probability and Bayes’ Rule
Bayes’ theorem formula:

P (A|B) =
P (B|A)P (A)

P (B)

Examples of calculating conditional probabilities
(medical tests, particle detectors)
Poisson distribution:

P (n) =
λne−λ

n!

Classical Information Theory
Shannon Entropy/Information
H = −k

∑
i p(ai) log p(ai) By convention, we use

k = 1 and log is base 2.

Properties of entropy

Entropy must be non-negative, and is maximized
for a uniform distribution.

Thermodynamics
Gibbs Entropy: S = −k

∑
pi log pi

Communication Theory
Number of Typical Messages W ≃ 2NH(p)

where H(p) is the entropy of the message and N
is the number of bits in the message.

Compression
factor for different values of p. As p approaches
0.5 from either side, we can compress the message
less and less, since there is more entropy we need
to encode.

Shannon’s Noiseless Coding
Theorem:
For a given message, we only need NH(p) bits to
encode it (definition of H(p) above)
Example: Let us have an alphabet A, B, C, D
with probabilities of 1/2, 1/4, 1/8, 1/8
respectively. Entropy is
H = −(1/2 log 1/2 + 1/4 log 1/4 . . . ) = 7/4 bits
Therefore, a message N characters long can be
encoded in 7/4 · N bits.

Shannon’s Noisy Coding Theorem:

On average, we need at least
N0

1−H(q)
bits to

encode one of 2N0 equally probable messages
(N0 is the original message length) where
H(q) = −[q log q + (1 − q) log(1 − q)] is the
entropy associated with single bit error q.
Efficient Coding: Plot N/N0 − 1 vs q to see
when overhead becomes too “large”
Huffman Coding
1. Sort the probabilities
2. Combine the two lowest probabilities into a

tree, storing characters as branches and the
sum of their probabilities as the root

3. Repeat until all probabilities are combined,
and we reach a probability of 1

4. Set 0/1 to left/right (either pairing), and
traverse the tree to find the encoding

Dirac Notation

⟨Ψ| ⇐⇒ |ψ⟩†

Ket Matrix

|0⟩ or |H⟩
[
1
0

]
|1⟩ or |V ⟩

[
0
1

]
Diagonal Up 1√

2

[
1
1

]
Diagonal Down 1√

2

[
1

−1

]
Left Circular 1√

2

[
1
i

]
Right Circular 1√

2

[
1
−i

]

|Ψ⟩ = cos θ
2

|0⟩ + eiϕ sin θ
2

|1⟩
+x = 1√

2
(|0⟩ + |1⟩)

−x = 1√
2
(|0⟩ − |1⟩)

+y = 1√
2
(|0⟩ + i |1⟩)

−y = 1√
2
(|0⟩ − i |1⟩)

Change of basis Let θ be a rotation of basis
vectors, counterclockwise.

|x⟩ = cos θ |x′⟩ − sin θ |y′⟩ and

|y⟩ = sin θ |x′⟩ + cos θ |y′⟩

where |x′⟩ and |y′⟩ are the new basis vectors.

Outer Product Given that |ψ⟩ =

|ψ⟩ ⟨ϕ| =

[
ψ1ϕ1 ψ1ϕ2
ψ2ϕ1 ψ2ϕ2

]
Quantum State Tomography

• Set a set of observables to uniquely determine
a state. For a single qubit, we can use the
Pauli operators.

• Prepare many copies of the state
• Measure the observables and use probability

and regression to reconstruct the state

Operators

Operators produce another ket

Mean value of an observable Measuring an
observable V̂ =

∑
i vi |vi⟩ ⟨vi| in the state |Ψ⟩

Obtains result vi with probability

p(vi) = | ⟨vi|Ψ⟩ |2

Repeating measurement many times obtains
expectation value

⟨V ⟩ =
∑
i Pivi =

∑
i | ⟨vi|Ψ⟩ |2vi

⟨V ⟩Ψ = ⟨Ψ|V̂ |Ψ⟩

Uncertainty

Variance is ∆V 2 = ⟨Ψ|(V̂ − ⟨Ψ|V̂ |Ψ⟩)2|Ψ⟩
∆V 2 = ⟨Ψ|V̂ 2|Ψ⟩ − ⟨Ψ|V̂ |Ψ⟩2 = ⟨V̂ 2⟩ − ⟨V̂ ⟩2

Heisenberg Uncertainty Principle

∆x∆p ≥ 1
2
| ⟨ψ|[Â, B̂]|ψ⟩ | (e.g. for [x̂, p̂] = iℏ we

find ∆x∆p ≥ ℏ
2
)

Pauli Operators

σ̂x =

(
0 1
1 0

)
= |0⟩ ⟨1| + |1⟩ ⟨0|

Eigenvectors:

(
1
0

)
,

(
0
1

)
σ̂y =

(
0 −i
i 0

)
= i(|1⟩ ⟨0| − |0⟩ ⟨1|)

Eigenvectors: 1√
2

(
1
i

)
, 1√

2

(
1
−i

)
σ̂z =

(
1 0
0 −1

)
= |0⟩ ⟨0| − |1⟩ ⟨1|

Eigenvectors: 1√
2

(
1
1

)
, 1√

2

(
1

−1

)
Î =

(
1 0
0 1

)
= |0⟩ ⟨0| + |1⟩ ⟨1|

Eigenvectors:

(
0
1

)
,

(
1
0

)
(All have respective eigenvalues of +1 and -1)

Commutaton Relations

[σ̂x, σ̂y ] = 2iσ̂z

[σ̂y, σ̂z ] = 2iσ̂x

[σ̂z, σ̂x] = 2iσ̂y

{σ̂x, σ̂y} = 0

{σ̂y, σ̂z} = 0

{σ̂z, σ̂x} = 0

[σ̂a, σ̂b] = 2iϵabcσ̂c

For direction n⃗, n⃗ · ⃗̂σ = nxσ̂x + ny (̂σ)y + nzσ̂z
For any operator,

Ĥ =

(
a c − id

c + id b

)

=
a + b

2
Î +

a − b

2
σ̂z + cσ̂x + dσ̂y

Common Gates
Hadamard gate:

Ĥ = 1√
2

(
1 1
1 −1

)
= 1√

2
(σ̂z + σ̂x) Rotation

operator: R̂(n⃗, θ) = e−iθn⃗· ⃗̂J Where
⃗̂
J is the

angular momentum operator, and
n⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector.

For spin-1/2,
⃗̂
J = 1

2
⃗̂σ

Tensor Products
Given that |ψ⟩ =

(
a
b

)
and |ϕ⟩ =

(
c
d

)

|ψ⟩ ⊗ |ϕ⟩ =

a
(
c
d

)
b

(
c
d

)
 =


ac
ad
bc
bd


For operators,

Â ⊗ B̂ =

(
a b
c d

)
⊗

(
α β
γ δ

)

=

a
(
α β
γ δ

)
b

(
α β
γ δ

)
c

(
α β
γ δ

)
d

(
α β
γ δ

)


=


aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ


Properties
Not commutative. Distributive:
|ψ⟩ ⊗ (|ϕ⟩ + |φ⟩) = |ψ⟩ ⊗ |ϕ⟩ + |ψ⟩ ⊗ |φ⟩
Â ⊗ (B̂ + Ĉ) = Â ⊗ B̂ + Â ⊗ Ĉ
Operators can act on one photon and not the
other: Eg, let

σ
x
A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


thus,

σ
x
A |HH⟩ = σ

x
A ⊗ I(|H⟩A ⊗ |H⟩B)

= (σ
x
A |H⟩A) ⊗ (I |H⟩B)

= |V ⟩A ⊗ |H⟩B
= |VH⟩

or 
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1
0
0
0

 =


0
0
1
0


Classical Cryptography
Criterion for Perfect Secrecy Let {pi} be the
set of possible plaintexts, and {cj} be the set of

possible ciphertexts. P (pi|Cj) = P (pi)∀i, j
(discovering a ciphertext provides no information
about the plaintext)

Quantum Cryptography
Based on no-cloning theorem (cannot copy an
unknown quantum state)

BB84 (Quantum Key Distribution)
1. Alice sends a random sequence of bits,

randomly encoded in either H/V or +45/-45
basis, to Bob

2. Bob measures each qubit in a random basis
3. Alice and Bob compare bases used
4. Alice and Bob discard qubits measured in

different bases
5. Alice and Bob compare a subset of their

qubits to check for eavesdropping
6. Alice and Bob use the remaining qubits as a

shared key
7. Alice and Bob use the shared key to encrypt

and decrypt messages

Errors in the key indicate eavesdropping
(probability that Eve does not cause an error is

(3/4)N , where N is the number of qubits tested)

B92 Protocol
Non-orthogonal bases, eg |0⟩ , |1⟩ and |0′⟩ , |1′⟩
Alice prepares states in |0⟩ , |1′⟩, associating
them with 0 and 1, and sends them to Bob.

Bob measures in the two basis randomly. If he
receives a |0⟩, he discards it, as it could have

been prepared as |0⟩ or |1′⟩, but if he receives a

|1⟩, he knows it was prepared as |1′⟩. Same for

|0′⟩ , |1′⟩
Advantages: Only needs 2 states and 2 basis,
unconditionally secure in a lossless channel, does
not make use of entanglement.

Entanglement
Bell states

|Ψ+⟩ =
1

√
2
(|HV ⟩ + |VH⟩)

|Ψ−⟩ =
1

√
2
(|HV ⟩ − |VH⟩)

|Φ+⟩ =
1

√
2
(|HH⟩ + |V V ⟩)

|Φ−⟩ =
1

√
2
(|HH⟩ − |V V ⟩)

Ψ− is isotropic (it remains the same no matter
which axes we choose to measure it along) By
decomposing it into θ basis, we can show that

Ψ− = 1√
2
(|HV ⟩ − |VH⟩) =

1√
2
(|θ, θ + π/2⟩ − |θ + π/2, θ⟩)

Examples of entangled states (|ψ−⟩)
EPR Pair: |ψ−⟩ = 1√

2
(|01⟩ − |10⟩)

GHZ State: |ψ−⟩ = 1√
2
(|000⟩ − |111⟩)

W State: |ψ−⟩ = 1√
3
(|001⟩ + |010⟩ + |100⟩)

Density matrix formalism
Density Operator: Represents a mixture of
states ρ̂ =

∑
n pn |ϕn⟩ ⟨ϕn|

Expectation Value: ⟨A⟩ = Tr(p̂Â)

Purity: Tr(ρ̂2) =
∑
m ρ2m is the purity of a

state Essentially how separable / correlated the
two states are.

Reduced density matrices
For a two-bit state that can be factored,

|ψAB⟩ = |ψA⟩ ⊗ |ψB⟩

We can use the reduced density matrix to
describe the state of one of the qubits.
TrBρAB ≡ |ψA⟩ ⟨ψA|Tr |ψB⟩ ⟨ψB | =
|ψA⟩ ⟨ψA| = ρA

Von Neumann entropy

SA = −Tr(ρ̂A log ρ̂A = −
∑
i p
A
i ln pAi =

−
∑
i |ai|

2 ln |ai|
2 ̸= 0) and SA ≡ SB

(Characterizes how strongly A and B are
entangled)
Local Measurements:
Generalized Born Rule: We can extend the
Born rule to density matrices:

p(a) = Tr(ρ̂Π̂a)

Where Π̂a is the projector onto the eigenspace of
Â with eigenvalue a, e.g. Π̂a =

∑
i |ai⟩ ⟨ai|

Bell’s Inequalities
Local Realism
Local realism is the idea that the properties of a
system are determined by the properties of the
system’s parts. AKA, no spooky action at a
distance.
Bell’s Inequality: For any local hidden variable
theory, the following inequality holds:

| < MAMB−MANB+NAMB+NANB > | ≤ 2

Where MA,MB,NA,NB are the results of
measurements on two entangled particles.
CHSH Game: We can construct a game to test
Bell’s inequality. Alice and Bob each have a bit,
and they can choose to measure it in one of two
bases. They win if the XOR of their bits is 0.
Using deterministic strategies, the maximum win
rate is 75%.
However, using entangled particles, we can
achieve a win rate of 85%, violating Bell’s
inequality.
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